
Appeared in Proc. 41st IEEE/IFIP International Conference on

Dependable Systems and Networks, Dependable Computing

and Communication Symposium (DCCS) track (DSN 11)

Coercing Clients into Facilitating Failover for Object Delivery

Wyatt Lloyd, Michael J. Freedman
Princeton University

Abstract—Application-level protocols used for object deliv-
ery, such as HTTP, are built atop TCP/IP and inherit its host-
to-host abstraction. Given that these services are replicated
for scalability, this unnecessarily exposes failures of individual
servers to their clients. While changes to both client and server
applications can be used to mask such failures, this paper
explores the feasibility of transparent recovery for unmodified

object delivery services (TRODS).
The key insight in TRODS is cross-layer visibility and con-

trol: TRODS carefully derives reliable storage for application-
level state from the mechanics of the transport layer. This
state is used to reconstruct object delivery sessions, which are
then transparently spliced into the client’s ongoing connection.
TRODS is fully backwards-compatible, requiring no changes to
the clients or server applications. Its performance is competitive
with unmodified HTTP services, providing nearly identical
throughput while enabling timely failover.

I. INTRODUCTION

Ideally, a client’s interaction with a replicated service will
fail only when the service fails. Yet most Internet services
tie the fate of a client’s connection to a single server,
because they are built using TCP and inherit its host-to-host
bindings. If this single server fails, the client’s connection
breaks, and it appears to the client that the service has
failed. However, if a new server can transparently failover
the connection—that is, interact with the client exactly as
the original server would have—the client’s connection can
continue uninterrupted and unaware of the failure.

We aim to enable failover for a large class of Internet
services, called object delivery services, that play an integral
role in users’ online experiences by giving clients read-
only access to content objects, such as webpages, images,
and videos. Object delivery services are typically replicated
for scalability and fault-tolerance, e.g., there are tens to
thousands of servers that all deliver the same set of objects.
If one such server fails while delivering an object, another
server has the potential to continue delivering it. This paper
demonstrates that such recovery can be done transparently,
effectively, and practically.

Our system, Transparent Recovery for Object Delivery
Services (TRODS), has been designed with the goal of
immediate deployability, which introduces two challenges.
Clients of the service should not be modified: They are

Copyright notice: 2011 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

often not under the service’s control and often run different
applications, browsers, and operating systems. Similarly, the
server’s application code should not be modified: Source
code may be unavailable, and application changes would
require integration effort for every service that seeks failover.
Instead, TRODS is implemented as a server-side kernel
module and requires no changes to the client or application.

At a high level, TRODS operates by ensuring that, at
failover time, a recovery server has the minimal application-
level information necessary to continue a connection. This
information is preserved in two ways. First, it can be
retransmitted by the client to its recovery server. TRODS
does not modify the client to accomplish this, instead, it
leverages its on-path position within the server’s kernel to
manipulate a connection’s TCP packets, in order to coerce
the client into retransmitting the information to the new
server. Second, the information can be saved to a persistent
store that will survive the failure of the original server.

We describe two complementary versions of TRODS
that use different resources as persistent stores. The first
version, TRODS-KV, uses a key-value store for persistence.
It improves on previous failover schemes by requiring only
a single remote operation apart from the original server—a
single save to the key-value store—to guarantee any subse-
quent connection failover. The second version, TRODS-TS,
eliminates the need for any remote operations by carefully
repurposing the TCP timestamp option that accompanies
every packet in a connection as the persistent store. These
two approaches are complementary: TRODS-KV is more
general purpose, handles more abnormal object delivery
scenarios, and avoids some additional security concerns.
On the other hand, TRODS-TS has very low overhead and
requires no additional physical resources for deployment.
Together, TRODS-TS can serve the highly-popular objects
of a service, while TRODS-KV can handle the unpopular
and exceptional cases.

This paper focuses on the use of HTTP as the canonical
and ubiquitous protocol for object delivery. However, we
believe that TRODS’ approach is similarly applicable to
other protocols for object delivery.

TRODS has significantly lower overhead than previous
transparent failover schemes. Several of these schemes re-
quire primary and backup servers to process requests in
parallel, e.g., FT-TCP (hot backup) [24] and ST-TCP [14].
This redundant processing reduces the systems’ throughput
per machine by at least 50%. Other prior schemes that

!"#$%&'
()*+'

,*"*%-$.'

/$.0$.'

/$.0$.'

/$.0$.'

1$234*"5$'
/&).$'

(#0$%$66'
7)%#&).'

/$.0#-$'

8!9'
!"#$%&

:9'

!'

!'

!'

!'

Figure 1. A typical service architecture that uses TRODS.

avoid an active backup—e.g., FT-TCP (cold backup) and
CoRAL [1]—still require many remote operations to save
state so it can be replayed at recovery time. In contrast,
TRODS-KV needs only a single remote operation and
TRODS-TS eliminates them altogether.

II. PROTOCOL

This section gives a high-level overview of how TRODS
operates. We begin by describing how TRODS fits into
the architecture of a typical Internet service. Next, we
examine the structure of a connection to an object delivery
service. Finally, we detail how TRODS can failover a client’s
connection during each of its phases.
A. Architecture

Figure 1 shows the architecture of a typical Internet
service using TRODS. Every component is standard and,
excluding the key-value store, would likely be found in a
TRODS-free version of the service. The clients are unmodi-
fied, run their normal networking stack and applications, and
connect to the service using TCP. An unmodified load bal-
ancer routes all packets in a connection to the same server. A
liveness monitor maintains the load balancer’s pool of avail-
able servers. TRODS does not need a stateful load balancer,
so any stateless flow-based hashing suffices, e.g., consistent
hashing [9] or standard mod n hashing using the flow’s 5-
tuple for server affinity. The servers terminate the clients’
connections and include a TRODS kernel module that sits
in their network stacks. This presence allows TRODS to
manipulate and control the packets bidirectionally. Figure 1
also includes a key-value store, which TRODS-KV uses as
a persistent store, as discussed later.

This figure illustrates one concrete example of a service
architecture that uses TRODS. TRODS can work for any
general object delivery service that meets three require-
ments: it is comprised of replicated servers that serve static
objects, its servers can all use the same IP address(es), and
it has an updatable load balancer.

In this paper, we do not consider the failure of the load-
balancer or the liveness monitor. Both can be supported by
standard replication and failover techniques, and their state
need be linear only in the number of servers, not the number
of flows. Further, unlike typical deployments, TRODS can
tolerate inconsistent state between load-balancers, e.g., in
their known set of live servers. If one sends the subsequent

packets of an existing connection to a new server, the
connection is dealt with as a normal case of failover. We
do consider the failure of the key-value store in §IV-A.
B. The Anatomy of an ODS Connection

To clarify how TRODS enables failover, we first identify
the two stages of a connection to an object delivery service.
The first phase is connection setup, where the client and
server negotiate what object the client is going to download.
In HTTP, for example, this constitutes the HTTP GET
request and the server’s response header. The second phase
of the connection is the object download. In HTTP, this
corresponds to the transmission of the response body.

Transparent failover requires a new server to continue a
client’s interaction with the service over its pre-existing TCP
connection. If the client is in the setup phase, the new server
should continue negotiating with the client and then start the
object delivery. If the client is in the download phase, the
new server should continue the client’s download exactly
where the old server left off.

The two phases of a connection are quite different. The
setup phase is typically short, in terms of both bytes and
packets, and application-layer data flows in both directions.
The download phase can be long, and application-layer
data only flows from the server to the client. Accordingly,
TRODS handles failover for each phase quite differently.
C. Failover

TRODS takes the following steps to failover a client’s
connection on a new server:

1) Detect a server failure.
2) Redirect the client’s connection to a new server.
3) Initiate failover on the new server.
4) Determine the connection’s current phase.

If in the setup phase:
5) Continue negotiating with the client.

If in the download phase:
5) Determine what object the client is downloading.
6) Determine the client’s current offset into the object.
7) Resume sending the object from that point.

Failure Detection. To detect server failures, we apply
standard unreliable failure detection [3]. Periodically, a live-
ness monitor sends a heartbeat packet to each server and
each server responds with their own packet. The server is
determined to have failed if the liveness monitor does not
hear from a server for longer than a threshold amount of
time (25 ms in our implementation). This scheme detects
hardware failures, but not necessarily application failures.
Our implementation uses its position in the kernel of each
host to locally detect application failures (e.g., process
crashes). It then prevents the machine from exposing those
failures to the client (e.g., the TRODS module drops RST
packets arising in such scenarios), while also triggering
failover by the liveness monitor.

Connection Redirection. Connections to the failed server
must be rerouted to new servers so that failover can begin.
Once the liveness monitor detects a server has failed or a
new one has started, it updates the load balancer’s state about
the pool of active servers and their corresponding MAC
addresses. The load balancer will then start routing packets
to the new set of servers. Now, all new connections will be
handled by a live server.1

The choice of load-balancing scheme affects how ongoing
connections are remapped to servers. If consistent hash-
ing [9] is used, only connections to the failed server will be
reassigned elsewhere. By contrast, if a less smooth hashing
function is used—such as selecting a server by randomly
hashing mod the server-pool size—then almost all ongoing
connections will be reassigned to new servers. While more
disruptive, TRODS still handles this scenario, treating such
reassignments as normal cases of failover.
Failover Initiation. After a load-balancer redirects a con-
nection, the new server will receive any packets the client
sends. The new server will recognize that these packets are
in the middle of a TCP connection that does not exist on
this server and thus must be failed over. While there will
often be outstanding packets in the network when a server
fails—especially given the large TCP window size of an
ongoing download—TRODS cannot rely on these packets
either to exist or to arrive at the new server in order to
initiate failover. Instead, TRODS ensures the client will send
a packet that reaches the new server by leaving at least one
packet from the client unacknowledged at all times, coercing
its TCP stack to continue to retransmit it. Fortunately,
this does not affect the application-layer connection, as the
TCP specification allows the client to receive the server’s
application-layer response, even when its request has not
been acknowledged at the transport layer.
Determining the Current Phase. TRODS requires some
state to be shared between a connection’s original and
recovery servers, in order to accurately determine the current
phase of the connection. TRODS accomplishes this by
blocking a connection from entering the download phase
until it has saved some information to a persistent store
that will survive the failure of the original server. When
a new server starts to failover a connection, it first looks up
the connection in the persistent store. If the connection is
not found, the new server knows the connection is still in
the setup phase; otherwise, it is in the download phase. We
discuss the corner cases of phase determination in §III.
Continuing Negotiations. If the connection is in the setup
phase, the new server must continue the negotiation with
the client. Negotiation is stateful, which might suggest that

1The handling of new connections is what load-balancer products and
high-availability software packages refer to as failover. In these systems,
unlike in TRODS, ongoing TCP connections remapped to a different server
will be unable to continue.

TRODS needs to save already-negotiated state to the per-
sistent store, in order to continue negotiation after failover.
However, TRODS exploits the short length of the setup
phase to avoid this.

Because setup differs between protocols, TRODS deals
with each uniquely. The common theme is that TRODS
uses control of the TCP layer to effectively coerce the
client into providing storage unbeknownst to it. In HTTP,
for example, TRODS does not acknowledge the client’s
request until after the client has entered the download phase.
Thus, if a server failure occurs during the setup phase, the
client’s TCP stack will timeout and retransmit the request
so a new server can handle it. Here, TRODS again exploits
the separation between application-layer data and TCP-
layer acknowledgments, which allows a client’s application
to operate normally while its transport layer attempts to
retransmit packets. We discuss further details in §III.

Determining the Object. To continue a connection in the
download phase, a new server needs to determine both the
object being downloaded and the client’s offset into that
object. We assume that each service object will have an
objectID, a unique, concise identifier of the object, such as
a filename or URL. We further assume that all objects are
immutable, we have omitted the discussion of TRODS’ use
with versioned and dynamic objects due to space constraints.
Thus, if a new server knows the objectID associated with a
connection, it knows the object the client is downloading.
TRODS makes this objectID available to the new server by
persistently storing it.

Determining the Client’s Offset. Once TRODS has
determined which object a client is downloading, it still
needs to determine how far into the download the fail-
ure occur. TRODS derives this offset by again leveraging
cross-layer information. TRODS compares the objectISN—
the TCP sequence number for the first byte of the object
download, which had been saved earlier to the persistent
store—and the most recent TCP sequence number the client
has acknowledged. The difference between these two values
gives the client’s current offset into the object; all preceding
bytes have been successfully received at the client.

Resuming Object Downloads. Once TRODS knows the
objectID and offset for a connection, it must transfer the
object, starting at this offset, from an application running on
the new server. TRODS accomplishes this by initiating a new
local connection to the application, and using the objectID to
synthesize an application-level request for the client’s object.
It quickly acknowledges and discards the downloading ob-
ject until the client’s current offset is reached, at which point
it begins transmitting the data from the server application to
the client. In many applications, this initial “discard” phase
can be avoided by requesting the client’s offset directly, e.g.,
through Range-Request headers in HTTP.

!"#$%&' ($)*$)'
+,,' -!.' -!.' +,,'

(/0'

+!1'

2$3'

+!1'

+!1'

+!1'

4506+!1'

(/06+!1'

+!1'

2$7,89'

2$7,8:'

2$7,80'

450'

+!1'

2$3'
2$3'
2$7,'

2$7,89'

2$7,8:'

2$7,80'

4;#"'
<*$)'

!"

#"

$"

%'

Figure 2. A typical client-server HTTP connection at both
the application and TCP layers. The dashed acknowledgment
for the client’s request is sent by the server’s TCP stack, but
dropped by TRODS. The right-most “failover” label indicates a
stage of the connection; we detail how TRODS handles failover
for each in §III-B.

III. TRODS FOR HTTP
While TRODS provides a general framework for per-

forming failover, it does require a mechanism for extracting
a connection’s objectID and objectISN, which typically
requires application-specific parsing. In HTTP, for example,
this objectID is commonly the request URL, while the
objectISN is the first byte of the HTTP response body. In our
TRODS prototype, this application-specific HTTP knowl-
edge constitutes about 100 lines of code. For concreteness,
this section details TRODS’ handling of HTTP connections.

We start by exploring how TRODS handles a normal
connection at a packet-by-packet level. We then show how
this behavior allows TRODS to failover that connection to
a new server for all possible connection states.

We make the these assumptions for a typical connection:
1) The request fits in a single packet.
2) The response header fits in a single packet.
3) The response body is less than 4 GB in size.
4) The object download takes less than 13 minutes.
5) Neither persistent nor pipelined connections are used.
6) HTTP chunked transfer encoding is not used.

The first four assumptions hold true for the majority of
HTTP connections, and TRODS takes advantage of them to
improve performance. The next two assumptions simplify
the basic description of TRODS. We complete our specifi-
cation by relaxing each assumption in §III-C.
A. Normal Operation

Figure 2 shows a HTTP connection at both the application
and transport layers, and Table I briefly summarizes how
TRODS interacts with this connection from its position
underneath the server’s TCP layer.

Cli Srv TRODS Operation
Syn

Syn Locally store knowledge of this connection
Ack
Req Extract and locally save objID

Ack Drop

Resp1
Extract objISN
Block until objID/objISN are persistently stored
Do not ack client’s request

Ack
Resp2 Do not ack client’s request

Ack
.

Fin Locally store sequence number of FIN
Fin/ Delete objID/objISN from persistent storage
Ack Delete connection from local storage

Ack Ack client’s request and Fin

Table I
Normal operation during a typical HTTP connection.

The connection begins with TCP’s three-way handshake.
During the handshake when the server sends a response
SYN packet, TRODS locally stores knowledge of this con-
nection by saving the client’s IP address and port into an
in-memory hashtable. This allows TRODS to distinguish
between normal packets to the server, whose connections
will be in the hashtable, and packets that should initiate
failover, whose connections will not be in the hashtable
because they originated at another server.

The connection continues with the client sending a HTTP
request that fits in a single packet. From this request,
TRODS extracts the objectID from the packet, which nor-
mally consists of the URI.2 Under normal processing, the
server’s transport layer immediately responds to receiving
this request with an ACK; TRODS instead drops this packet.
If TRODS did not drop this ACK and the server failed after
acknowledging the request, but before persistently storing
anything, the client’s requested objectID would be lost.

The application server then attempts to send the client
a response. This response is often too large to fit in a
single packet, so the TCP stack on the server distributes it
over many TCP segments. The first segment (and packet)
will include the response header and the beginning of
the response body. TRODS determines the objectISN—the
sequence number of the first byte of the response body—by
searching through the HTTP payload for the double CRLF
that delineates the end of the HTTP response header. TRODS
saves the objectISN and objectID to the persistent store,
before releasing the TCP stack to transmit the packets back
to the client. TRODS also modifies all packets that carry
the response to not acknowledge the client’s request. This
ensures that if the server fails, the client’s TCP stack will
eventually retransmit a failover-initiating packet.

2The objectID may also include some HTTP request headers, such as
cookies. If only the URI is used when other headers affect the server’s
response, the interaction can appear to be non-deterministic, which we omit
discussion of due to space constraints.

After the server’s TCP stack has transmitted the entire
response to the client, it sends a FIN packet to start tearing
down the connection. TRODS stores the TCP sequence
number for the FIN in its local hashtable, to help it later
determine if the client has received the entire response. The
client will respond to the server’s FIN with a FIN/ACK of
its own; TRODS checks that this acknowledges the server’s
FIN, and then knowing the client has received the entire
response, deletes the connection from the persistent store and
local hashtable. The connection terminates when the server
sends the client an ACK that cumulatively acknowledges the
client’s request and FIN.

Deleting connection information from the persistent store
is performed to reduce saved state, not to maintain cor-
rectness. Thus, it can be done in the background or during
periods of low-server load; it does not delay the connection.
B. Failure Recovery

Figure 2 groups the different stages of a connection into
failover cases. We now enumerate these stages, showing how
TRODS provides failover in each case.
Before Setup ¨. A server can fail after receiving a
client’s SYN but before responding with a SYN/ACK. If this
happens, the client’s TCP stack times out and retransmits
its SYN. This SYN will be routed to a new server and
the connection will proceed normally. If a server fails after
issuing a SYN/ACK but the network drops the packet, the
system’s behavior is identical. In later cases, we do not
discuss drops that are equivalent to scenarios without them.
During Setup ≠. A server can fail after the client receives
the SYN/ACK but before the server sends the response.
Because the client’s request remains unacknowledged, the
client’s TCP stack will eventually timeout and retransmit
the request. The load balancer will direct this request to a
new server, which will initiate failover.

On the new server, TRODS will lookup the client in
the persistent store. If the lookup succeeds, the connection
is currently in the download phase and is recovered as
described in Æ. If the lookup fails, the client is still in the
setup phase and has not received any part of the response
yet. TRODS will then open a TCP connection to the new
application server on the localhost and proceed with TCP’s
three-way handshake. Once the connection is established,
TRODS will splice together this new connection and the
client’s connection.3 The request will then be forwarded to
the server and the connection will proceed normally.
During Download Æ. If a server fails during the download
phase of a connection, the client’s TCP stack will eventually
timeout and retransmit the packet TRODS purposefully
did not acknowledge. This packet, or one that was in the
network when the server failed, can be combined with the

3TCP splicing joins two separate connections together so that they act
as one; it is accomplished by translating the IP addresses, port numbers,
and sequence numbers in every packet.

information in the persistent store to find the objectID and
objectISN for this connection.

The new TRODS instance that receives this packet will
start a connection with the local application instance, send-
ing a request for the object constructed from the objectID.
If supported, this request includes a Range-Request
header, indicating that the application server should start
transmitting the object at the client’s current offset. The
server will respond with a new response header and the
object starting at the specified offset. TRODS drops the
response header, and it splices together this connection with
the client’s original one.
After Download Ø. If the server fails after the client
finishes downloading the object, but before TRODS deletes
history of the connection from the persistent store, TRODS
might attempt failover as in Æ. However, the new server’s
HTTP response will be an error (status code 416), as the
range request specified an offset that is one byte past the
end of the object. TRODS will recognize that the client has
completed the download, drop the server’s response, close
the connection to the server, delete the client’s connection
from the persistent store, and, if the client’s packet was a
FIN, respond to the client with an ACK.

Some packets from a client may be delayed by the net-
work and not arrive until after the connection has completed
and TRODS has removed it from its local hashtable. If
this occurs, TRODS will attempt to failover the connection.
However, as the client has already completed its download
and closed the connection, it will respond to any new packets
from the server with a RST packet. TRODS forwards this
RST to the server, closing the newly-established connection.
While this does not affect the correctness of TRODS, it does
waste server resources. We describe how to restrict these
wasted failover attempts in §V-A, so that they only occur
when it is plausible that their original server has failed.

C. Extensions
For brevity, we omit the detailed explanations of how

TRODS handles HTTP connections that violate our assump-
tions described earlier. Instead, we briefly sketch the main
ideas for dealing with any violations. If the request is spread
across multiple packets—a rare event for GET requests—
TRODS persistently stores each packet before allowing its
corresponding acknowledgment to flow back to the client.
TRODS handles multi-packet response headers similarly, by
saving them in their entirety to the persistent store before
allowing them to flow to the client. If an object is over 4GB
the TCP sequence numbers will wrap around so TRODS
uses separate objectIDs for different sections of the object. If
an object download takes more than 13 minutes, the client’s
connection must be acknowledged to prevent its TCP stack
from resetting the connection. TRODS does acknowledge
these rare connections, and then saves them to a list in the
key-value store for special handling. TRODS handles persis-

tent and pipelined connections by splitting apart any packets
that include data for multiple objects. Chunked-encoding
may only be used if it is deterministic across replicas, as its
in-line metadata of chunk lengths prohibit TRODS’ simple
determination of the client’s application-level offset into the
response object. We have verified that lighttpd’s static file
and flash video modules are deterministic by examining their
source code and expect that most other chunking schemes
are as well.

IV. PERSISTENT STORAGE

The TRODS protocol refers opaquely to a “persistent
store” that assists with saving connection state necessary for
failover. This store is persistent in that it survives the failure
of the original server. In this section, we describe the two
persistent stores we implemented.
A. Key-Value Store

The first persistent store is a key-value storage system
(e.g., memcached [5]). The storage key that TRODS uses for
each connection is comprised of the client’s IP address and
port number. The key-value store can be used for arbitrarily-
sized objects, which is not true for TCP Timestamps. Thus, if
a large store is needed—e.g., when multiple response header
packets need to be stored before being sent to the client—
TRODS uses the key-value store.

The configuration and deployment of the key-value store
trades off efficiency and availability. Key-value storage
servers can be colocated in the same rack, cluster, or data-
center as application servers. As the key-value store moves
closer to its application servers, latency decreases but the
probability of correlated failure increases. Data in the key-
value store can be replicated for additional fault-tolerance,
but even unreplicated storage provides resilience to a single
failure: A connection fails only when its application and
key-value server fail simultaneously. For this reason, many
deployments may choose an in-memory key-value store
(e.g., memcached [5]) for low latency and high throughput.
B. TCP Timestamps

The second persistent store is the TCP timestamp op-
tion [8] that accompanies every packet in a connection.
Failover in TRODS is always initiated by a packet from
the client, which is what makes this store persistent. The
TCP timestamp option is negotiated during connection setup:
Each host attaches the TCP timestamp option to its SYN
packet. Once negotiated, each host will attach its own 4-
byte timestamp value and a 4-byte timestamp echo reply to
every packet. The timestamp echo reply effectively repeats
the last timestamp value that a host received. The use of the
TCP timestamp option is widespread: It is used by default in
modern versions of Linux, FreeBSD, OS X, and Windows.
In the rare event that a host does not use the option, TRODS
can fall back to its key-value store for persistent storage.

TCP timestamps were intended for two purposes. First,
they help improve the accuracy of RTT estimation. A host

will subtract the timestamp echo reply in an ACK packet
from the current time to obtain a new RTT. This allows
the host to accurately sample the RTT at a high rate and is
“vitally important” for large TCP window sizes [8]. Thus,
when co-opting the TCP timestamp option as persistent
storage, TRODS must ensure that it does not interfere with
accurate RTT measurement.

Second, the TCP timestamp option helps protect against
wrapping sequence numbers (PAWS). PAWS is used to
prevent old duplicate segments from a previous connection
from corrupting a current connection between the same
hosts using exactly the same ports. This will only happen
if (1) a client reconnects to the same server in a short
window of time (less than 2 maximum segment lifetimes,
or about 4 minutes); and (2) in between these connections,
the client makes some number of other connections that
is an exact multiple of its ephemeral port range.4 This
is sufficiently unlikely that TRODS does not handle this
possibility. However, because the client cannot be changed,
TRODS’ use of the timestamp must not interfere with the
client’s PAWS processing. To enforce PAWS, the client will
drop all packets with a server timestamp that is deemed
too “old”. TRODS ensures timestamps are non-decreasing
in modular 32-bit space,5 so they will be accepted.

To summarize, the TCP timestamp option provides 32 bits
that the client will echo back with two constraints: The
timestamps must be non-decreasing in modular 32-bit space
and they still must provide accurate RTT measurement.
These 32 bits cannot naively hold the objectID and objec-
tISN: The objectISN alone is 32 bits and the objectID has
been unconstrained until now. Thus, TRODS must reduce
the number of bits needed for the objectID and objectISN
to fit in the TCP timestamp, while obeying these constraints.
5 Bits for the ObjectISN. The objectISN can be derived by
summing two values: the TCP connection’s initial sequence
number (ISN) and the length of the response header. TRODS
uses this property, as well as small changes at the TCP and
HTTP levels, to store the objectISN in 5 bits rather than 32.

At the TCP level, we fix the connection’s ISN to a value
derived from the client’s IP and port. This avoids needing
any bits to store the connection’s ISN, but raises some
security concerns that we address in §V-C.

If the response header is longer than a TCP segment
size (typically 1448 bytes with the TCP Timestamp option),
then the entire response needs to be stored in the key-value
store. Consequently, we only consider response headers that
are less than 1448 bytes. Storing its length still requires
dlg 1448e = 11 bits. However, TRODS uses an HTTP-level
optimization to reduce this further: It pads the response
header to a multiple of 64 bytes, which reduces the number
of bits needed to

⌃
lg d1448/64e

⌥
= 5. TRODS pads the

4The smallest ephemeral port range we could find was 3975 [23].
5That is, tsa�tsb when 0(tsa�tsb)<231 in unsigned 32-bit math.

header by adding linear white space to the last header field,
which HTTP clients ignore [4]. Our choice to pad to 64-byte
multiples is arbitrary; we could pad to 128 bytes and then
only need 4 bits for the response length.

When TRODS pads the header, it misaligns the TCP
sequence number space between the client and server: The
client has now received more bytes that the server has sent.
TRODS modifies the sequence numbers in all subsequent
packets to correct for this difference.
7 Bits for the Timestamp. TRODS ensures accurate RTT
measurement by passing packets to the server’s TCP layer
with the appropriate timestamps replaced. When the TCP
layer passes TRODS a packet for transmission, TRODS
saves the timestamp in a per-connection 128-entry array. It
then overwrites the packet’s original timestamp with its own
value that includes a 7-bit index into that connection’s array.
When TRODS receives a packet to pass up to the local TCP
stack, it uses the 7-bit index embedded in its own timestamp
to look up the origin timestamp, which it swaps in before
sending the packet up the stack.

The use of a 7-bit index limits the number of outstanding
timestamps to 128, and TRODS blocks packets to stay under
this limit. With a normal MSS size of 1448 bytes, this means
at most 185 KB can be in flight from the server at any point
(e.g., a connection with a 50 ms RTT could download at
30 Mbps). This behavior seems reasonable for most web
services, but if this limit is too low for a particular service,
it can increase the size of the array and bit-length of the
index, at the cost of requiring either further response header
padding or supporting fewer objectIDs.
20 Bits for the ObjectID. The objectID is represented by
a long, unique string, such as a file path or full URL. This
objectID cannot be embedded in a timestamp, so TRODS
instead embeds a shorter index that selects from an array
of objectIDs. This array is normally static and replicated
on each server. With 20 bits, TRODS can uniquely identify
over one million objects. If a service has more objects than
can fit in the array, it can use the timestamp option as the
persistent store for its most popular million objects and a
key-value store for less popular objects. Given the Zipfian
nature of Web traffic [2], the million popular objects that can
use the TCP timestamp option should cover the majority of
a service’s traffic. TRODS can also consistently update this
array to account for new or newly popular objects, but we
omit a description of this behavior for brevity.
Ordering the Fields. Finally, TRODS orders its fields in the
timestamp option carefully, as shown in Figure 3, to ensure
they pass the client’s PAWS check by being non-decreasing
in modular 32-bit space. The timestamp index resides in
the highest-order bits, followed by the objectISN, while the
objectID resides in the lowest-order bits. The objectID and
objectISN field do not change once set, but the timestamp
index does: it increases and eventually wraps around. By

!"# $%"# "&'()&*#

+# ,# -.#

$/0123&04#!5*16# 7891:3!;#!5*16#

7891:3!<=#)>213#

$/0123&04#74?)5#

.#

@-+#

?0123&04.#

?0123&04@-+#

"1AB%)551:?)5#$<#$&8(1#
.#

--.B@#

)891:3!;.#

)891:3!;--.B@#

C()8&(#7891:3!;#$&8(1#

Figure 3. The relationship between a packet, its TCP timestamp
option, the fields TRODS shoehorns into that option, the per-
connection timestamp table, and the global objectID table.

placing it in the high-order bits, TRODS ensures that when it
wraps around, the numerical representation of the timestamp
itself wraps around and thus remains non-decreasing.
C. Combining KV and TS Storage

The key-value store and timestamp storage play comple-
mentary roles. TRODS-KV is more general purpose and
scalable, yet introduces higher overhead than TRODS-TS.
Thus, one could use these two variants together, and gain the
benefits of both. In fact, we evaluate such a dual deployment
in §VI. When both variants of TRODS are used together,
however, a recovery server needs to know which durable
store to access in order to find the connection’s state. If the
TCP timestamp option is not present, the TRODS module
can immediately conclude that a key-value store lookup
is required. If the option is present, TRODS stores a hint
indicating which store to access in the high-order 7 bits of
the timestamp. When the key-value store is used these bits
are set to a special reserved value that TRODS-TS does not
use as a timestamp index. For these connections, TRODS
still needs to perform translation on the timestamps.

V. SECURITY CONCERNS

The use of TRODS introduces some security concerns:
attackers can spoof packets to try to initiate TRODS failover,
they can modify TCP timestamps to attempt to gain access to
unauthorized content, and they can more readily guess TCP
sequence numbers to spoof or hijack a TCP connection. This
section describes how TRODS mitigates these concerns.
A. Denial-of-Service Attacks

Bogus ACKs and Requests. An attacker can send requests
or ACK packets to a TRODS-enabled service with spoofed,
random client addresses, attempting to cause TRODS to
failover non-existent connections. After all, TRODS’ normal
response to an unknown request or ACK packet is to
initiate failover to its local application instance, wasting both
application and persistent store resources.

TRODS can limit its vulnerability to such DoS attacks
by initiating failover only when it can verify that it received
this packet because another server recently failed. To support

this, we replicate the load balancing information to the
TRODS instance on each server, i.e., its key range in the
case of consistent hashing, or the server pool size (n)
and its assigned number in the case of mod n hashing.
If a failure-initiating packet arriving at a server is outside
its known range—i.e., it should not be selected given the
packet’s 5-tuple and its knowledge of the load balancer’s
hashing scheme and state—then the server would only
have received this packet if the load balancer’s server pool
recently changed. In this case, the server initiates failover.
Otherwise, when the packet is in the server’s known range,
it is dropped as illegitimate, as it should have been in the
server’s local hashtable.

Therefore, TRODS mitigates this failure-initiation DoS
attack, as it can be performed only temporarily on the servers
directly affected by another’s failure. TRODS can weaken
this attack further by giving normal packet processing higher
priority than failover processing. This reduces the attack
from a denial-of-service to a denial-of-failover.
Clients Forcing the Slow Path. A client can force TRODS
onto the slow path by sending requests that are longer than
two packets and thus need to be saved to the key-value store.
It can also force the slow path by sending a request that
results in a multi-packet response header, which also needs
to be saved to the key-value store. In either case, TRODS has
no way to distinguish legitimate slow-path connections from
malicious ones, so it must serve them all. However, TRODS
can limit the attacker’s damage by lowering the processing
priority of slow-path connections, as it does with failover.
Thus, slow-path attacks can still degrade the service of other
slow-path connections, but they have difficulty in degrading
the service of normal connections.
B. Accessing Unauthorized Content

When TCP timestamps are used for persistent storage, a
client can potentially download an object they do not have
permission to access, by sending an ACK packet to trigger
failover with a timestamp that indexes an unauthorized
objectID. This is partially unavoidable when timestamps
are used, but given the enhancements to TRODS in §V-A,
clients can only trigger failover after an actual failure has
occurred. Thus, this attack will only work when a server
has failed recently, and the attacker can guess the objectID
index for the object it desires. If these security measures are
not sufficient, a service should use TRODS’ key-value store
for all protected content. With TRODS-KV, the objectID of
the client’s download cannot be modified by the client.
C. TCP Sequence Number Guessing

When TRODS-TS is used, the server uses an ISN that
is generated deterministically from the client’s IP and port.
This will raise security concerns for anyone familiar with
TCP sequence number guessing attacks [15]. In these at-
tacks, an attacker spoofs a SYN packet from a client, and
then spoofs an ACK packet that acknowledges a guess of

the server’s ISN. If this guess is correct, it completes the
TCP three-way handshake and the attacker can send a data
packet that appears to be from the client.

TRODS is not vulnerable to traditional sequence number
hijacking, but its approach allows malicious clients, once
having completed a successful connection, to initiate new
downloads before fully establishing new connections.6 This
vector may be used as a denial-of-service attack. In particu-
lar, rather than randomly, TRODS generates its ISN from a
cryptographic hash of the client IP, port, time epoch, and a
private key that is known to all servers in a TRODS cluster.
Thus, an attacker learns the ISN for a given IP and port
only if it can receive traffic at that network location. This is
akin to the protections offered by normal randomized ISNs,
except that this ISN is constant across the entire epoch. After
learning the ISN, a client then can spoof connections from
other network locations during the same epoch. That said,
TRODS is used for services that are inherently read-only and
so the attack can only be used to start illegitimate downloads
and cannot modify state. If limiting the sequence number
guessing attack to a DoS attack from a limited range of
IPs and ports is unacceptable for a service, it should use
TRODS-KV instead.

VI. EVALUATION

This section demonstrates the practicality and effective-
ness of TRODS. We first quantify TRODS’ cost in terms
of decreased throughput and increased latency. We then
evaluate how TRODS handles failure in a cluster setting
and how much excess latency it incurs due to failover.
Implementation. The TRODS implementation is approxi-
mately 3,000 lines of C code. It is a loadable kernel module
for Linux 2.6.32.3 and using it does not require recompiling
the base kernel or rebooting the machine. The current
TRODS implementation handles the normal cases, where
none of our assumptions from Section §III are violated.

We also implemented ~CoRAL, a partial implementation
of CoRAL [1] in a kernel module for Linux 2.6.32.3.
CoRAL routes requests to a primary server through a backup
server and saves the entire response on the backup before
sending any of it to the client. Our implementation only
saves the response on a backup machine and thus gives a
rough upper bound on the true performance of CoRAL.
Experimental Setup. Our lighttpd throughput, hybrid
throughput, and latency experiments use a total of three
machines: one to run clients, one for a TRODS server, and
one for a key-value store. The excess-latency-due-to-failover
experiment uses those machines and an additional one for
load-balancing. The failure recovery experiment uses three
server machines, as well as one machine each for clients, a
load balancer, and the key-value store. Each machine used
in these experiments has eight 2.3GHz cores and 8 GB

6Note that clients of a TRODS service are not vulnerable to this attack,
as they use standard TCP ISNs.

 2500

 5000

 7500

 10000

 12500

 15000

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

T
P

P
S

 (
re

q
s/

s)

Web Object Size

Unmodified
TRODS-TS
TRODS-KV

~CoRAL

(a) Lighttpd web server, 1 core

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 22500

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

T
P

P
S

 (
re

q
s/

s)

Web Object Size

Unmodified
TRODS-TS
TRODS-KV

~CoRAL

(b) Lighttpd web server, 8 cores

 0

 0.2

 0.4

 0.6

 0.8

 1

1KB 2KB 4KB 8KB 16KB 32KB 64KB

N
o
rm

a
liz

e
d
 T

P
P

S

Web Object Size

Unmodified
TRODS-TS
TRODS-KV

FT-TCP(cold)
~CoRAL

FT-TCP(hot)

(c) Apache web server

Figure 4. HTTP throughput experiments. The first experiment (a) uses lighttpd with a single server core, which becomes CPU
bound. The second (b) uses lighttpd with 8 cores and is not CPU bound. The final (c) uses Apache in order to compare TRODS
to FT-TCP. For all, the median value over 25 trials is shown; min and max values are within 5% of the median and omitted.

of memory, and is connected to a 1 Gbps switch. Our
Apache throughput experiment was run on Emulab [22]
using pc3000 nodes connected via 1 Gbps links.

We use memcached 1.4.4 [5] without expiration or evic-
tion as our key-value store and we use lighttpd 1.4.23 [12]
as our regular web server. We use a simple Click [11]
configuration run in the kernel as our load balancer.

All throughput experiments show the median value of 25
trials; the min and max values are always within 5% of
the median and are omitted. Each throughput trial consisted
of enough client processes to saturate server throughput
continuously fetching a web object. We ran the tests for
40s and exclude the first and last 5s of each trial to avoid
including experimental artifacts or non-steady-state rates.
Throughput Per Server (TPPS). We evaluate the through-
put per server of each system. This throughput metric
accounts for all the machines needed to provide failover.
For instance, in TRODS-KV, it accounts for the use of
the key-value store, while in FT-TCP, it accounts for the
use of the backup server. These “complete system costs”
allow us to more accurately evaluate each approaches’
overhead compared to an unmodified system lacking failover
capabilities; prior work largely avoided such comparisons.

We calculate TPPS by dividing the throughput of primary
servers by 1+TPP /TPS , where TPP and TPS are the pri-
mary and secondary servers’ throughputs, respectively. So,
in a “hot backup” scheme where each primary has its own
backup (TPP = TPS), the TPPS is TPP

1+(TPP /TPS) =
TPP
2 .

To calculate the TPPS for TRODS-KV, we benchmarked
its fixed size saves to our memcached key-value store
at 123,468 saves/s. Then, in Figure 4, when the primary
server for TRODS-KV achieved a throughput of TPP , we
report a TPPS of TPP

1+TPP /123468 . To calculate the TPPS
for ~CoRAL, we benchmarked its object-sized saves to our
memcached backup. For 1K objects, memcached can handle
95,037 saves/sec and the CoRAL primary can handle 9,209
requests/sec, so the 1K TPPS is 9209

(1+(9209/95037)) = 8395.

A. Throughput
We ran three sets of experiments to examine how TRODS

affects the maximum throughput of a web server.

In our first experiment, shown in Figure 4(a), we turned
off all but one of the cores on the server machine, and ran the
web server as a single process, which ended up consuming
100% of the CPU. TRODS operations in the kernel steal
cycles from the web server, leading to a larger performance
degradation that in the non-CPU-bound experiment. Using
only a single core, TRODS-TS experiences an 11% decrease
in TPPS for 1 KB web objects (from 14,608 requests/s to
12,980 reqs/s). TRODS-KV sees a 39% reduction in TPPS
(to 8,940 reqs/s). TRODS-KV’s higher overhead arose from
both its reduced throughput on the web server machine,
as well as its consumed resources on the key-value store.
However, as object sizes increase, the web server becomes
less CPU bound and, as a result, the throughput of both
TRODS variants become competitive with the unmodified
service. For example, when objects are 32 KB, TRODS-
TS’s TPPS is less than 0.01% lower than the unmodified
system, and TRODS-KV’s TPPS is only 20% lower. In
contrast, ~CoRAL sees a 43% lower throughput for 1 KB
web objects than an unmodified service, and this grows to
a 66% lower TPPS for 32 KB objects: ~CoRAL’s overhead
grows as object sizes increase, as saving the entire object
on a backup machine becomes more costly.

In our second experiment, shown in Figure 4(b), all 8
cores on the server are used by 8 server processes. The
web server is no longer CPU bound and TRODS processing
has a smaller effect on throughput. For 1 KB web objects,
TRODS-TS decreases TPPS by 7% (from 21,745 reqs/s
to 20,315 reqs/s), while TRODS-KV decreases TPPS by
38%. As with a single core, as object size increases, the
TRODS variants become more and more competitive with
the unmodified service: TRODS-TS is within 3% of the
unmodified for all objects 2 KB and larger, while TRODS-
KV is within 11% for all objects 16 KB and larger. On the
other hand, ~CoRAL again experiences a 40% decrease in
TPPS for 1 KB web object, with its relative TPPS continuing
to worsen as object size increases.

In our third experiment, shown in Figure 4(c), we eval-
uated throughput with the Apache web server included
with the FT-TCP codebase. As FT-TCP requires a Linux
2.4.20 kernel, we ran these experiments on Emulab. Fig-

ure 4(c) shows the TPPS for FT-TCP’s hot and cold backup
approaches,7 normalized against the TPPS for unmodified
Apache on a 2.4 kernel. The figure also includes the TPPS
for TRODS and ~CoRAL, normalized against unmodified
Apache on a 2.6 kernel, which is slightly more efficient
than on the older kernel. Both TRODS and ~CoRAL exhibit
behavior similar to the previous experiments. FT-TCP’s vari-
ants exhibit relatively stable normalized TPPS, as the amount
of additional work the scheme uses is a fixed percentage of
the total work that a given response requires.

In summary, when objects are 16 KB or larger, TRODS
is competitive with an unmodified service and achieves
much lower overhead than either ~CoRAL or FT-TCP. When
objects are small and the server is CPU limited, TRODS
suffers moderately decreased throughput, but it still has
lower overhead than ~CoRAL or FT-TCP.
B. Hybrid Throughput

Figure 5(a) characterize TRODS’ performance when using
our two persistent stores in varying proportions. We measure
the median throughput of 25 trials, run with the same param-
eters as our previous single-core throughput experiment. We
normalize these throughputs against that achieved when only
using the key-value store (i.e., 100% KV), to demonstrate
the relative performance gains from a hybrid deployment.
For reference, we also plot an “ideal 50/50” line that shows
the average of TRODS-KV and TRODS-TS.

The experiment demonstrates that the hybrid version of
TRODS performs well. When 50% of connections use
the KV store and the other 50% use timestamps, TRODS
throughput is within 4% of the ideal. This alleviates our
concern that requests that use the slower KV store will
unduly decrease the throughput of the hybrid system.
C. Latency

Table 5(b) shows the median and 99th percentile latencies
for different sections of 10,000 sequential fetches of a
1 byte web object. The latencies are measured by analyzing
tcpdump logs of the client’s connections.

The period between the client sending a SYN packet and
receiving a SYN/ACK experienced no additional latency
for either variant of TRODS: storing local knowledge of a
connection has no discernible overhead. Between sending an
HTTP request (Req) and receiving the first data packet in the
response (Resp.1), TRODS-KV has notably higher latency
than an unmodified service. This comes from TRODS-
KV blocking the connection until its save to the key-value
store completes. In contrast, TRODS-TS does not block the
connection and avoids any latency penalty.

Examining the latency of the entire connection (the SYN-
FIN section) reveals that TRODS-TS imposes less than 10
µs of additional latency, while TRODS-KV imposes less
than 150 µs of additional latency. Both of these increases are

7Note that we disabled system call interception for this experiment, as
it is unnecessary for deterministic services.

miniscule compared to the tens to hundreds of milliseconds
of delay between clients and servers across the wide-area.

Having shown that TRODS adds little to no overhead to
server throughput, we now demonstrate that it successfully
recovers client connections from server failures. Figure 5(c)
shows the per-second throughput of a 3-server cluster over a
time period with individual server failures. Each server runs
TRODS-TS; the resulting graph for TRODS-KV (not shown)
is similar. Web requests for 8 KB objects are concurrently
issued by 200 HTTP clients (running on the same physical
machine), who access the cluster through a single load-
balancer. The load-balancer also delays packets to create
a synthetic 20 ms RTT from clients to servers, emulating
wide-area connection latencies to nearby datacenters.

We fail server 1 during the 7th second of the experiment
by taking down its network interface. Upon detecting this
failure, the load balancer updates its server pool. Previously
established connections to server 1 are reassigned to the
remaining servers; the TRODS components of these servers
recover the reassigned connections. We further fail server
2 during the 20th second of the experiment, at which time
the load balancer directs all connections to the remaining
server. We find that the cluster’s total throughput, as shown
in the solid line at the top of Figure 5(c), remains constant
throughout the experiment; the overhead of recovering failed
connections does not have a noticeable effect.8

D. Failover Latency
While we have demonstrated that TRODS successfully

fails over connections between servers, this does not quantify
the delay experienced by clients during this process. Figure 6
shows the excess latency due to failover for a client request-
ing various object sizes. The figure shows the results for
TRODS-KV using a single server; the results for TRODS-
TS are similar and omitted. A load-balancer sits on path and
delays packets to create a 20 ms RTT. For each run, a client
requests an object of a given size for 5 minutes, while we
synthesize a failure in the every 4 seconds at the server.

We synthesize the failure in the kernel module by drop-
ping all packets during failure period and sending RST
packets to the server application for all existing connections
(we can synthesize such failures at a much higher rate than
we can induce actual ones). We simulate the use of a 25 ms
heartbeat timer by setting the failure period to a random
amount of time less than 25 ms, effectively mimicking the
behavior we observed in our previous experiment.

We measure latency as the time between the client sending
its first SYN packet and receiving the final byte of the re-
sponse. A transfer’s excess latency is defined as its increase
over the median of all non-failed connections during the run.
We graph the 95th percentile of the excess latency for non-
failed connections. A full 75% of failed-over connections

8We limit the cluster’s throughput to ~3K reqs/s to ensure that tcpdump,
which we use to record the experiment, does not drop any packets.

 1

 1.1

 1.2

 1.3

 1.4

1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB

N
o

rm
a

liz
e

d
 T

P
P

S

Web Object Size

100% TS
75% TS, 25% KV

Ideal 50/50
50% TS, 50% KV
25% TS, 75% KV

100% KV

(a) Hybrid throughput experiment showing the
relative performance of TRODS when both per-
sistent stores are used. We plot the throughput of
each proportion normalized against 100% KV.

!"#$"!

!"#!

$%&!

!"#!

%&'!

!"#'()*!

$%+,-.!

/0#!

()*+!,-.!

1234156!

789347:76!

512348726!

()*+!,(!!

:1341;6!

.;834516!

;9734;:56!

/0$1#2!

1234186!

.;<34.826!

;8;34;<76!

(b) Median (and 99th percentile) latency in µs
for different sections of a single HTTP connec-
tion, for both unmodified and TRODS services.
See Figure 2 for a depiction of these sections.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t
(r

e
q

s/
s)

Time (s)

Server 1 Fails

Server 2 Fails

Server 3
Server 2
Server 1

Total

(c) Server and cluster throughput using
TRODS-TS when undergoing failure recovery.
The cluster’s total throughput is unaffected by
these failures, and no connections are broken.

Figure 5.

 0.01

 0.1

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

~0

.2

20

200

3s

E
xc

e
ss

 L
a

te
n

cy
 (

m
s)

Web Object Size (KB)

Phs 1 Phs 2 Phs 3 Phs 4 95th

Figure 6. Excess latency when experiencing failover using
TRODS-KV. Overlapping data points that occur in the same
phase of the connection are combined and the size of the
shown points is proportional to the number of data points they
represent. The different failover phases are shown in Figure 2.

had excess latency above this 95th percentile, suggesting
that this excess latency is due to failover and not noise.

Each data point in Figure 6 indicates the connection phase
(as specified in §III-B) during which the failure occurred. If
data points in the same phase overlap (within 10% of each
other), we combine them and increase the plotted size of
the representative point. We find that the excess latency has
a multi-modal distribution, with distinct modes at ~0 ms,
.2 ms, 20 ms, 200 ms, and 3 s, as marked on the right y-
axis of the figure. We briefly characterize these sources of
added latency, in turn:

• ~0 ms: Phase 4 failovers occur after the client has
received the entire response and thus add no latency.

• .2 ms: This excess latency corresponds to the time
needed to perform a key-value lookup, setup a new connec-
tion to the server, and splice in the client’s connection. We
observe it when failover is triggered by an in-flight packet.

• 20 ms: Normal connections establish a large TCP
window by the time they reach the middle of the download
phase. When failover occurs at this point, it sets up a new
connection, and thus resets the window size. This increases
the number of RTTs needed to transmit the entire object and
creates a cluster of failovers around one RTT (20 ms).

• 200 ms: Our experiment uses Linux clients that have a
200 ms minimum value for their retransmit timeout. Thus,
even though the RTT of the connection is well below
200 ms, we always incur at least that latency when failover
is triggered by a retransmitted client packet.

• 3 s: When a SYN packet is lost, the client does not
have an estimate of the connection’s RTT. Thus, it waits a
conservative 3 s before retransmitting.

As object size increases, the proportion of phase 3
failovers also increases. This is not surprising: As a larger
proportion of a connection’s transfer time is spent down-
loading an object (i.e., in phase 3), the likelihood of failure
occurring during that phase similarly increases. Notice that
there are no phase 3 failovers for pages 5 KB and smaller.
This occurs because objects of this size or smaller can be
sent in a single TCP window with all packets within the
window separated by less than 15 µs. This small gap makes
it highly likely that the server will fail before (phase 2) or
after (phase 4) sending them all, and we did not observe any
contradictions to this in the course of our experiment.

In summary, most failovers in TRODS occurs with less
than 200 ms of excess latency, sufficiently low to not no-
ticeably impact a user’s experience. While some connections
experience a 3 s delay (12% of larger objects), this delay
is unavoidable due to SYN retransmission timers. In either
case, we argue it is still preferable to a broken connection.

VII. RELATED WORK

New Transport Layers. Several solutions for failure re-
covery introduce new transport layer protocols or primitives.
Trickles [16] uses a new transport layer protocol and a new
sockets API to make one end of a connection stateless.
SCTP [19] is a transport layer protocol that, among many
other things, allows a client to have connections to multiple
servers it can switch between. TCP Migrate [17] can be used
to migrate a connection from one server to another, which
can then be used with a soft-state synchronization protocol
between servers to accomplish failover [18]. M-TCP [20] is
a another TCP-like transport protocol designed to support
migration. All of these solutions modify the client’s TCP/IP
stack, TRODS does not require any client-side changes.

TCP Failover. Moving up the stack, there is a large body
of work on failover for TCP connections that do not require
changes to clients. FT-TCP [24] accomplishes TCP failover
by logging (persistently storing) every packet in a TCP con-
nection on a primary server to a backup server. Then, if the
primary server fails, the (cold) backup runs through the TCP
connection, and, once it catches up to the client’s current
position in the stream, it begins serving the client. As this
can make the time to failover a connection arbitrarily long,
they also describe a hot backup that processes all packets
upon receiving them. FT-TCP is more general than TRODS,
as it applies to all deterministic TCP services. However,
FT-TCP pays for this generality with increased overhead.
Every packet must be logged or processed in FT-TCP, while
TRODS-KV only “logs” once per object and TRODS-TS
avoids it entirely. Koch et al.describe a system [10] that is
very similar to FT-TCP’s hot backup approach. ST-TCP [14]
is another primary-backup system that avoids some logging
overhead placing the primary and backup on the same L2
network and having the backup snoop on the primary’s
traffic. Zhang et al. [25] describe a similar system that uses
a stateful load-balancer to explicitly transmit packets to both
the primary and backup. The Backdoors [21] avoids logging
by using programmable NICs to extract TCP and application
state from the server’s memory after an OS crash.
HTTP Failover. CoRAL [1] is primary-backup system
targeted at HTTP. All packets bound for the primary are
first routed through the backup who logs them. The primary
then uses application-level knowledge to identify the full
reply and persistently store it on the backup. TRODS is more
efficient that CoRAL because it avoids persistently storing
the entire reply. Luo et al. [13] describes a system for HTTP
failover where a “dispatcher” (load balancer) terminates the
client’s connections. Once a client has sent an entire request,
the load balancer stores it and forwards it onto a server.
Then if that server fails before fully responding, the load
balancer reconnects to a new server to continue. This moves
the problem of failure from the servers to the load balancer.
TCP Timestamps. We are not the first to use the TCP
timestamp option for embedding state. Giffin et al. [6] use
the low order bits of the TCP timestamp as a covert channel
for undetectable communication. In addition, starting with
version 2.6.26, the Linux kernel added support for window
scaling and SACK options in SYN cookies by encoding their
value in the lowest 9 bits of the TCP timestamp [7].

VIII. CONCLUSION

TRODS is a fully backwards-compatible system for in-
troducing transparent failover to object delivery services.
TRODS leverages cross-layer knowledge of both application
and TCP state, as well as TCP’s reliable transmission mech-
anisms, to exert control over unmodified clients. This control
allows TRODS to coerce clients into providing storage and
initiating failover when needed.

Through evaluation of a TRODS cluster, we demonstrate
that it is both practical and efficient. In failure-free scenarios,
TRODS does not significantly increase latency or decrease
server throughput. When a failure occurs, TRODS transpar-
ently restores clients’ ongoing connections, without adding
significant latency to the connections.

ACKNOWLEDGMENT

The authors would like to thank Erik Nordström, Muneeb
Ali, Anirudh Badam, Nate Foster, Prem Gopalan, Rob
Harrison, Michael Kaminsky, Wonho Kim, Steven Ko,
David Shue, Jeff Terrace, and Vijay Vasudevan for helpful
comments on earlier drafts of this paper. This work was
supported by NSF CAREER Grant #0953197 (CSR) and an
ONR Young Investigator Award.

REFERENCES
[1] N. Aghdaie and Y. Tamir. CoRAL: A transparent fault-tolerant web

service. Journal of Systems and Software, 82(1), 2009.
[2] A. Broder et al. Graph structure in the web. In Proc. World Wide

Web Conference (WWW), May 2000.
[3] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable

distributed systems. Journal of the ACM, 1996.
[4] R. Fielding et al. RFC 2616: HTTP/1.1, Jun 1999.
[5] B. Fitzpatrick. Memcached: a distributed memory object caching

system. http://memcached.org/, 2009.
[6] J. Giffin, R. Greenstadt, P. Litwack, and R. Tibbetts. Covert messaging

through tcp timestamps. In Proc. PET, Apr. 2002.
[7] Improving syncookies. http://lwn.net/Articles/277146/, Apr 2008.
[8] V. Jacobson, R. Braden, and D. Borman. RFC 1323: Tcp extensions

for high performance, May 1992.
[9] D. Karger et al. Consistent hashing and random trees: Distributed

caching protocols for relieving hot spots on the World Wide Web. In
Proc. Symposium on Theory of Computing (STOC), May 1997.

[10] R. R. Koch, S. Hortikar, L. E. Moser, and P. M. Melliar-Smith.
Transparent tcp connection failover. Proc. DSN, June 2003.

[11] E. Kohler et al. The click modular router. ACM TOCS, 2000.
[12] Lighttpd. http://www.lighttpd.net/, 2010.
[13] M. Luo and C. Yang. Constructing zero-loss web services. In Proc.

INFOCOM, Apr. 2001.
[14] M. Marwah, S. Mishra, and C. Fetzer. Tcp server fault tolerance using

connection migration to a backup server. In Proc. DSN, Jun 2003.
[15] R. Morris. A weakness in the 4.2bsd unix tcp/ip software. Technical

Report TR-117, Bell Labs, 1985.
[16] A. Shieh, A. C. Myers, and E. G. Sirer. A stateless approach to

connection-oriented protocols. ACM TOCS, 26, 2008.
[17] A. C. Snoeren and H. Balakrishnan. An end-to-end approach to host

mobility. In Proc. MobiCom, Aug. 2000.
[18] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan. Fine-grained

failover using connection migration. In Proc. USITS, Mar. 2001.
[19] R. Stewart. RFC 4960: SCTP, Sep 2007.
[20] F. Sultan et al. Migratory tcp: connection migration for service

continuity in the internet. In Proc. ICDCS, July 2002.
[21] F. Sultan et al. Recovering internet service sessions from operating

system failures. IEEE Internet Computing, 9(2), 2005.
[22] B. White et al. An integrated experimental environment for distributed

systems and networks. In Proc. OSDI, Dec. 2002.
[23] Windows ephemeral port range. http://support.microsoft.com/kb/

929851, 2009.
[24] D. Zagorodnov et al. Practical and low-overhead masking of failures

of tcp-based servers. ACM TOCS, 27(2), 2009.
[25] R. Zhang, T. F. Abdelzaher, and J. A. Stankovic. Efficient tcp

connection failover in web server clusters. In Proc. INFOCOM, Mar.
2004.

