
Speculative Recovery: Cheap, Highly Available Fault Tolerance
with Disaggregated Storage

Nanqinqin Li, Anja Kalaba, Michael J. Freedman, Wyatt Lloyd, and Amit Levy
Princeton University

Abstract
The ubiquity of disaggregated storage in cloud computing
has led to a nascent technique for fault tolerance: instead of
utilizing application-level replication, newly-launched backup
instances recover application state from disaggregated storage
(REDS) after a primary’s failure. Attractively, REDS provides
fault tolerance at a much lower cost than traditional replication
schemes, wherein at least two instances are running. Failover
in REDS is slow, however, because it sequentially first detects
primary failure and only then starts recovery on a backup.

We propose speculative recovery to accelerate failover and
thus increase the availability of applications using REDS.
Instead of proceeding with failover sequentially, speculative
recovery safely and efficiently parallelizes detecting primary
failure and running recovery on a backup, by employing our
new super and collapse primitives for disaggregated stor-
age. Our implementation and evaluation of speculative recov-
ery demonstrate that it considerably reduces failover time.

1 Introduction

Replicated, network-attached storage devices have all but
replaced local disks in cloud settings. Such disaggregated
disks provide a host of useful features, including scalable
storage capacity and performance, convenient data backup,
and disk fault-resilience [16, 33, 49].

Their ubiquity has led developers to begin leveraging disk
fault-tolerance to achieve application fault-tolerance [12, 15,
50]. When an application running on one instance, the pri-
mary, uses a disaggregated disk, its state survives its failure.
This enables an emerging fault-tolerance technique we term
recovery from disaggregated storage (REDS) where a backup
instance recovers application state from the disaggregated
disk and continues serving the application. In general, single-
node applications can use REDS unmodified as long as they
are crash-consistent—i.e. they persist state updates to disk
before externalizing them to clients and are able to recover
state from disk after a crash [27, 39, 58]. This includes most
relational databases, local key-value stores, and file systems.

REDS is an alternative to the traditional application-level
replication, where the application running on the primary con-

tinuously replicates its state to at least one backup [20, 22, 24,
42, 44, 56, 62, 66]. Application-level replication provides high
availability since it ensures that a backup can service requests
immediately should the primary fail. However, application-
level replication is also expensive as each backup runs an
entire instance of the application, requiring as much CPU,
memory, storage, network resources, etc., as the primary.

In contrast, REDS only requires running a single instance
of the application at a time but sacrifices availability since
failover can be slow. In particular, REDS requires that the
disaggregated disk be detached from a potentially faulty in-
stance before initiating recovery on a new one. As a result,
REDS risks long recovery periods on the new instance when
the original may have come back online faster, e.g., when a
transient networking issue resolves itself, or waiting too long
to determine the original instance has indeed failed.

In this paper, we introduce speculative recovery, an appli-
cation fault-tolerance technique that leverages disaggregated
disks to achieve resource efficiency similar to REDS with
significantly higher availability. Speculative recovery begins
as soon as the primary appears unavailable, e.g., when it stops
responding to health checks. It immediately begins recovery
on a new backup instance by creating an independent clone
of the disk and attaching it to the backup, while the primary
instance is not interfered with to allow it an opportunity to
come back in parallel. Whichever instance, the primary or the
backup, becomes available first serves the application while
the other is deallocated. This reduces unavailability to the
minimum of either the primary becoming available again or
the backup’s speculative recovery completing.

There are two major challenges in realizing speculative
recovery on existing disaggregated storage systems. The first
is ensuring application correctness, i.e., linearizability [37],
when both the primary and the backup are using a clone of
the same application disk. This requires that updates to the
disk from one instance do not interfere with the other, and
that the external world only ever sees the effects of updates
from one instance. The second challenge is ensuring good
disk performance for the backup instance to recover the ap-
plication. Many existing disaggregated storage systems have
designs for disk clones that provide poor performance.

To address these challenges, speculative recovery intro-
duces new primitives, super and collapse, for disaggre-
gated disks. super allows a disk to be in a superposition
temporarily where two independent versions of the disk are
allowed to diverge until a collapse when one is observed,
and it appears as though the other never existed. In essence,
super provides disk clones with isolation and good perfor-
mance, and collapse guarantees correctness by ensuring
only one, primary or backup, of the clones can be observed.
super uses copy-on-write to achieve effective isolation,

and the ephemeral nature of superposition enables a new de-
sign we term collocated-clone that minimizes the negative
performance impact of copy-on-write. With collocated-clone,
a disk clone directly refers to its parent’s allocation table to
locate data blocks, eliminating the overhead of re-populating
the clone’s own allocation table, which is a major bottleneck
in some existing disaggregated storage systems. Collocated-
clone also adopts a minimal data path by keeping all data
blocks of a clone on the same storage shards as the corre-
sponding blocks of its parent. We believe that such colloca-
tion does not skew the data distribution of a storage cluster
given that only one clone continues after collapse.
collapse uses a dirty bit to ensure only one clone of

the disk is ever externally observable. The dirty bit reflects
whether there have been any updates to the disk from the
primary after super is invoked. If so, collapse determines
that the primary may have been observed and then aborts
speculative recovery by deallocating the disk clone and the
backup. Otherwise, collapse ensures no future writes from
the primary will be accepted and then informs the backup that
it can start externalizing state updates.

We implement super and collapse based on Ceph [68],
an open-source distributed storage system, and use them to
implement speculative recovery from disaggregated storage
(SpecREDS). Our evaluation compares SpecREDS to REDS
for three stateful applications: MySQL, PostgreSQL, and
MariaDB. We find that our collocated-clone design achieves
near-normal disk performance that supports application re-
covery up to an order of magnitude faster compared to Ceph’s
native clone design. Such improvement enables SpecREDS
to achieve significantly faster failover in some scenarios.

In summary, the main contributions of this paper include:

• Speculative recovery, which increases the availability of
applications that achieve cheap fault tolerance using REDS.

• The super and collapse primitives and their designs in-
cluding collocated-clone for disk cloning with near-normal
performance and the dirty bit for guaranteeing correctness.

2 Highly Available Applications

Stateful data center applications strive to provide high avail-
ability in the face of individual machine failures. This is often

exacerbated on the cloud because developers may have no
way to recover data from a virtual machine’s or a container’s
disk after a failure. Practitioners today adopt both traditional
fault-tolerance techniques at the application-level as well as
cloud-native techniques that rely on disaggregated storage.

2.1 Application-level Replication

A standard approach to highly available fault tolerance for
stateful applications is to replicate the application across mul-
tiple compute instances (physical machines, VMs, containers,
etc.). Commonly, applications use primary-backup replica-
tion where a primary instance handles all client requests and
forwards the execution logs to backup instances. If the pri-
mary fails, backups are ready to be promoted with minimal
overhead since their local state is already up-to-date.

However, application-level replication has two major draw-
backs. First, it can be costly. Because backups require re-
dundant compute resources—CPU, memory, etc.—adding a
backup costs as much as hosting the original application. Sec-
ond, support for application-level replication is often imple-
mented separately for each application [53, 56]. While many
stateful applications support replication, including MySQL,
PostgreSQL, and MongoDB, many do not, including SQLite,
LevelDB, and RocksDB.

2.2 Recovery From Disaggregated Storage

Two recent trends have enabled alternative fault-tolerance
strategies. First, cloud platforms have adopted disaggregated
storage [28, 41, 45, 52] to provide virtual block devices to
enable more efficient resource management and provide more
reliable services [16, 33, 49]. Data stored on these disaggre-
gated disks is striped and replicated across a storage area
network to provide highly available and highly durable block
devices that can outlast failures of the compute instances they
are attached to. Second, provisioning compute instances (VMs
or containers) has become fast—new compute instances can
be spawned in seconds rather than in minutes [2, 5, 13, 47].

As a result, practitioners have adopted an alternative fault-
tolerance mechanism, REDS, leveraging disaggregated disks
and fast provisioning [12, 15, 50]. In REDS (Figure 1), in-
stead of maintaining live backup replicas of the application, a
backup instance is only spawned after the primary instance is
presumed down. The disaggregated disk is then moved from
the failing primary to the new backup and the application is
restarted on the backup. Since the application data stored on
disk persist through machine failures, the backup can recover
the application to a consistent pre-failure point.

REDS provides fault tolerance to stateful applications at
virtually no additional cost, since only a single instance is
provisioned most of the time, with at most a short overlap
of a primary and backup instance during failures. Moreover,

(1) Timeout
unresponsiveness

(2) Move over
disk

(3) Restart on
new instance

(2) Wait out
unresponsiveness

(1) Create a
clone

(2)' Restart on
new instance

Proceed in parallel
Whoever finishes first wins!

REDS

Speculative
recovery

Figure 1: REDS vs speculative recovery. REDS sequentially
times out the unresponsiveness and restarts the application on
a new instance by moving over the application disk, whereas
speculative recovery parallelizes the two instances.

unlike application-level replication, it does not require ex-
plicit support from the application and can thus support any
crash-consistent [27,39,58] application—i.e., any application
that persists state changes before externalizing them and can
recover to a consistent state from disk following a crash fail-
ure. This includes most relational databases, local key-value
stores, and file systems.

2.2.1 Lower Application Availability

Compared to application-level replication, REDS suffers from
lower availability due to the relatively long process of restart-
ing the application after failure has occurred.

As shown in Figure 1, the failover process in REDS
includes two steps: (1) determining whether the primary
instance has failed and (2) recovering the application on
a backup instance. Step 1, the timeout phase, is typically
achieved using a timeout of unresponsiveness for the primary
to avoid spurious downtime during Step 2. Step 2 recovers the
application by spawning a new instance as the backup, mov-
ing over the application disk, and restarting the application.

These steps must happen sequentially since both require ex-
clusive access to the disk. For the timeout phase, the primary
needs the disk attached in case it becomes responsive again.
For the recovery phase, the backup needs the disk to restart
the application. As a result, downtime following a failure is
dictated by the sum of the timeout and the recovery phase.

Clearly, short recovery and short timeouts would improve
availability. Much of recovery—spawning a new virtual ma-
chine or container and attaching a disaggregated disk to these
instances—is relatively fast and becoming faster in modern
data center infrastructure. For example, an AWS EC2 vir-
tual machine can be allocated and spawned in a few seconds
with optimized operating system distributions [57], while

containers as well as other cloud virtualization techniques
can allocate runtime environments an order of magnitude
faster [13, 47]. Similarly, disaggregated disks, such as a Ceph
block device, can be attached to a new virtual machine or
container in a few hundred milliseconds.

Application recovery time, on the other hand, is less
predictable—the same application might require a few sec-
onds or several minutes to recover depending on, e.g., the state
of the application’s write-ahead-log. As a result, very short
timeouts risk triggering such long recoveries unnecessarily
when the primary’s unresponsiveness is ephemeral (e.g. the
monitor is faulty, a packet is lost, etc.). For instance, if a tem-
porary network problem leads to 6 seconds of unavailability
for the primary, using a short 5 second timeout to trigger a
1 minute recovery leads to 65 seconds of unavailability. In
contrast, a longer timeout would have only 6 seconds of un-
availability in this scenario. In practice, “primary-is-failed”
timeouts are often quite long—for example, Kubernetes uses
a default 5 minute timeout to detect node failure [43].

3 Introducing Speculative Recovery

REDS can result in poor availability because the primary must
be marked irreversibly failed before recovery can be attempted
on a backup. Timeout lengths are chosen conservatively to
avoid long recoveries if the failure is temporary, and recovery
cannot begin until after this timeout is expired. In the worst
case, this results in downtime during a long timeout followed
by more downtime until a long recovery completes.

This is fundamental to REDS because there is no way to
predict the future. When downtime is detected, we do not
yet know if the primary has actually failed, if the failure can
self-heal quickly, or if a failed health-check was actually due
to temporary network issues or a faulty monitor, etc. We also
cannot know how long it would take for a backup to be ready
to process requests from clients—depending on the disk state
when the primary failed, it could be seconds or minutes.

But suppose an oracle did know, at the moment of apparent
failure, how long recovery would take on a backup as well
as how long the primary’s apparent failure would last. Such
an oracle could achieve considerably better availability by
avoiding timeouts completely while avoiding a slow recovery
when the primary’s failure is temporary. In particular, the
oracle’s optimal decision would be to choose the shorter of
waiting for the primary to self-heal or immediately beginning
recovery on a backup without waiting.

We propose a new failover design, speculative recovery,
that makes similarly optimal choices in practice, without
knowing the future. Speculative recovery pursues both paths
(Figure 1) in parallel and either aborts recovery if the primary
becomes available first, or irreversibly marks the primary
failed if recovery completes first.

To accomplish this, speculative recovery creates and at-
taches an independent clone of the primary’s disk to a new

backup instance immediately when primary downtime is de-
tected. The backup begins recovery from the cloned disk,
potentially in parallel with the primary’s continued operation
if it is not actually failed. This results in a “superposition”
where the parent and child disks are permitted to temporarily
diverge, as long as neither is observed externally. Once one
of them is observed (i.e., if the primary becomes available or
when clients are redirected to a fully recovered backup), the
superposition collapses and the unobserved disk is destroyed.
Specifically, this superposition state collapses in two cases:

• Observing the primary. If any writes to the parent disk
are observed, the primary is assumed to be available and
the superposition is collapsed by aborting recovery on
the backup and deallocating the child disk.

• Observing the backup. If recovery on the backup com-
pletes successfully and no writes have been issued to
the parent disk, the superposition is collapsed by deallo-
cating the parent disk, destroying the primary, and pro-
moting the backup to be the new primary by pointing all
clients to it.

Thus, speculative recovery on the backup can complete
though the primary may still be operational, while guarantee-
ing external correctness. As long as the application is crash-
consistent, observing clients cannot distinguish between spec-
ulative recovery and REDS, except that failover may appear
much faster. If a client receives an acknowledgement from
the primary for a request that modifies application state, crash
consistency mandates that the primary must have written to
the disk, which would halt failover to the backup, in turn
ensuring the backup is never observable.

Conversely, if a client is directed to communicate with the
backup, the primary cannot have acknowledged any state-
modifying operations or is no longer servicing client requests,
and thus the backup’s state is consistent with all previous
reads from the primary.

To realize these important properties, speculative recovery
introduces two new disaggregated storage primitives: super
and collapse. super produces a temporal, performant disk
clone using copy-on-write (COW) semantics, resulting in a
superposition in which the parent disk (attached to the pri-
mary) and the child disk (attached to the backup) diverge from
the same state. collapse destroys the parent disk if and only
if it has not changed since super, otherwise it destroys the,
yet unobserved, child disk.

It is critical that disk clones spawned by super are fast to
create and performant, so as not to slow down recovery on the
backup significantly. super uses a new form of COW disk,
collocated-clone, that improves COW writes over existing de-
signs by up to an order of magnitude and performs almost as
well as a regular, non-COW disk. Similarly, collapse must
operate atomically—it must determine whether any writes
have been made to the parent disk and block future writes if

not, atomically—but should also not unduly delay failover.
collapse uses a single, global dirty bit for the entire parent
disk to track whether writes have occurred in the superposi-
tion, allowing collapse to use a simple protocol with only a
single round trip to one storage shard. In both cases, these de-
signs are enabled by the temporal nature of the superposition.

4 Design

This section details our design for speculative recovery. It
describes the system components, the design of super, the
design of collapse, why and when speculative recovery is
correct, and finally discusses some performance concerns.

4.1 Components and Overview
A speculative recovery system consists of three components:
(1) an instance pool to host applications; (2) disaggregated
storage that provides highly durable and highly available vir-
tual disks to applications with the super and collapse prim-
itives; (3) a failure monitor that monitors the health of the
running application instances and coordinates speculative re-
covery for failed instances.

When the failure monitor presumes the primary instance
is unhealthy, e.g., if the monitor fails to connect to the appli-
cation, it initiates speculative recovery. It invokes super on
the primary’s disaggregated disk which creates a lightweight
clone using COW semantics (§4.2). In addition, super
causes the parent disk to begin tracking writes to support
the collapse protocol (§4.3). Next, the monitor spins up a
new backup instance from the same application boot image
as the primary, except with the cloned child disk attached in
place of the parent. When the backup finishes restarting the
application, the monitor calls collapse, which either atomi-
cally promotes the backup if there have been no writes to the
parent disk or deallocates it if there have been writes.

4.2 super: Creating a Disk Superposition
As the backup instance boots and starts up the application,
it may write to the child disk. For example, fsck might fix
corruption in the file system and the application may replay
and commit or rollback uncommitted transactions from its
write-ahead log (WAL). Meanwhile, the primary is still al-
lowed to function should it become available before recovery
on the backup is complete. As a result, the parent and child
disks are likely to diverge. However, this divergence retains
application correctness because the backup is not observable
to clients until after it is determined that the primary has not
acknowledged any state-modifying requests.

This design is relatively simple to realize using existing
primitives in disaggregated disks. In particular, many disag-
gregated disks provide copy-on-write clones that are quick
to create. In principle, this should allow speculative recovery

1 2 4 8 16 32
of concurrent writes

0

10

20

30

40

M
ea

n
la

te
nc

y
(m

s) clone
regular

Figure 2: Concurrent writes on EBS. Writes are issued si-
multaneously in batches of 1 write to 32 concurrent writes.

to explore both paths simultaneously—waiting out the unre-
sponsiveness on the primary and recovering the application
on the backup—and achieve the same outcome as an oracle.
In addition, COW clones provide the child disk with the same
level of durability guarantee as the parent since dirtied data
blocks are copied as new blocks and thus can be applied the
same replication schema (e.g., three-way replication).

Unfortunately, existing designs for COW disk clones per-
form very poorly for recovery workloads. We conducted
black-box experiments on EBS to measure the I/O perfor-
mance of EBS clones. EBS supports clones by first creating
a snapshot from a volume and then creating a new volume
from that snapshot. Figure 2 shows the write performance
of EBS clones with varying levels of parallelism. Normally,
concurrent writes on a regular EBS volume can exploit disk
parallelism well (the green line): the average latency when 32
writes are in-flight is only 2.6x the latency of a single write.
However, for a cloned EBS volume (the red line), this relation
becomes 7x, indicating significant performance bottlenecks
for a cloned volume under highly parallel writes.

To understand the underlying reasons, we instrumented the
open-source Ceph codebase where a similar behavior exists:
on a cloned disk, the average latency with 32 writes in-flight is
7.1x the latency of a single write (more results and details are
described in §6.2). We discovered two fundamental problems
with the Ceph clone implementation, and we speculate that
these may be general to many other clone designs.

First, because disaggregated disks typically treat a clone’s
dirtied blocks like any other new disk block, most COW de-
signs copy dirtied blocks to different storage shards than the
ones hosting the original blocks. This results in considerable
overhead compared to modifying blocks in place. Second,
each dirtied block requires allocating a new location in the
storage area network, which is typically a blocking operation.
As a result, concurrent writes that touch mostly newly dirtied
blocks are performed in sequence rather than in parallel.

In short, copying dirty blocks to new locations over the
network increases single write latency significantly, while
serialized allocation eliminates most of the parallelism ben-
efit for concurrent writes. These overheads are reasonable
for typical uses of COW-cloned disks, where COW writes,
and particularly concurrent writes, are infrequent [25]. How-

ever, a recovery workload is often write-intensive. As a result,
these overheads can dramatically increase the time to recover
applications—in some cases from seconds on a regular disag-
gregated disk to several minutes on a COW clone.

4.2.1 Collocated-Clone

super addresses both performance issues, copying overhead
and serialization of COW writes, using a mechanism we term
collocated-clone. Rather than treating copied dirty blocks the
same as newly allocated blocks, collocated-clone reuses the
parent’s allocation table to collocate child blocks with their
corresponding parent blocks. This accomplishes two things.
First, copying a dirtied block never traverses the network, as
child blocks are always on the same shard as the parent blocks.
Second, COW writes never require a blocking allocation oper-
ation as the parent’s allocation table already contains enough
information to derive the child block’s location—specifically,
it is always on the same shard as the parent’s and its name
can be derived from the parent block’s name.

As a result, COW writes in collocated-clone require only
marginally more work than normal writes. The dirtied block
must be copied, but only locally—incurring local disk over-
head, but not network overhead. Moreover, these writes never
require a new block allocation, so concurrent writes are al-
ways just as parallelizable as on a regular, non-COW disk.

Collocated-clone is not suitable for many uses of COW-
clones because it risks amplifying any skew in the original
disk’s allocation. However, in speculative recovery, clones are
temporary: after a short period of coexistence, it is either the
child being deallocated or the child succeeding the parent and
carrying on. Shards only need to have sufficient extra storage
to store dirtied blocks temporarily.

In addition, collocated-clone only provides limited isolation
between the parent and child. Because collocated-clone does
not require the parent to do COW, the parent can directly
update its data blocks in case it self-recovers. Thus, if the
parent updates a data block the child has not copied, the child
can see those updates, breaking the isolation. Again, this is
permissible in the special semantics of superposition since if
the parent is ever updated, the child will never be externalized.

4.3 collapse: Collapsing a Superposition

By allowing the parent and child disks to diverge in their
superposition, speculative recovery introduces potential ap-
plication inconsistency that must be hidden from clients. To
prevent such inconsistencies, collapse uses a single disk-
global dirty bit to indicate whether there have been writes
applied to the parent disk since the creation of the child. It
must also have a means of atomically promoting the backup
instance to be the new primary, even with in-flight operations
from the old primary.

Tracking primary writes. When super is invoked on a
disk, its disk-global dirty and allow-write bits are initially
set to false and true, respectively, on a fault-tolerant tracking
shard in the storage cluster (this may simply be one of the
data shards). When a shard of the parent disk receives a write
request, before servicing the write, it requests permission to
perform the write from the tracking shard. If the allow-write
bit is true, the tracking shard sets the dirty bit and allows the
shard to proceed with the write. Otherwise it responds that
the shard should reject the write.

Atomic promotion. collapse operations are performed
on the tracking shard. This shard atomically checks the dirty
bit and, if it is still false, sets the allow-write bit to false,
preventing any future write attempts to the parent disk. It
then returns an acknowledgment that the parent disk is dis-
abled and being deallocated. Otherwise, if the dirty bit is true,
it responds that the parent disk has been observed, that the
backup should be taken down, and begins asynchronously
deallocating the child disk, aborting failover.

Tracking disk modification using a disk-global dirty bit
allows collapse to complete quickly, as the only atomic
operation is limited to a single node in the disaggregated stor-
age cluster, avoiding expensive multi-node protocols such as
two-phase commit. Such a tracking mechanism may be un-
necessary and inappropriate for long-lived COW-clones that
may have subsequent children and grandchildren. However,
due to the ephemeral nature of the superposition, and because
it is at most one clone of a disk at any given time, this design
allows collapse to be supported efficiently.

After promotion of the backup is complete, the primary
might still be able to service client reads from its in-memory
cache, even though its disk has been deallocated by collapse.
This would externalize potentially stale values. To prevent
this, a stronger method is needed to sever the old primary
from the clients. The specific mechanisms to achieve this
may be cloud-platform dependent, but one option is to use
an “elastic IP” [18] to remap the old primary’s IP address to
the newly promoted primary, automatically rerouting clients.
Other mechanisms such as using a firewall to block the pri-
mary’s access to the network would also work.

4.4 Correctness and the Failure Model

Speculative recovery ensures correctness, i.e., linearizabil-
ity [37], by ensuring two properties. First, only one instance
of an application is accessible to clients at any point in time.
Second, if the backup is promoted and becomes accessible, its
state begins from the previous primary’s last acknowledged
changes and thus it looks like a continuation of the old pri-
mary. The first property is achieved trivially using atomic
promotion. The second property is achieved using super and
collapse in sequence for a crash-consistent application: a
backup is only promoted by collapse if there have been no

writes since super, and thus the disk it recovers from must
include the previous primary’s last acknowledged changes as
required by crash consistency.

Our design of collapse uses writes to the primary’s disk as
a signal of liveness to abort failover. This will correctly detect
crash failures where the primary stops completely. However,
it will not detect more nuanced kinds of failures such as partial
failures or fail-slow failures. For example, even if the primary
is disconnected from the clients, it may still write to disk for
internal operations such as log rotation and garbage collection.
This means that writes to the primary’s disk may not always
reflect client-visible application state changes, and collapse
would abort failover in these cases. In addition, fail-slow fail-
ures, where applications are slow but not inaccessible, can
occur [26, 34, 40, 60]. In these failure situations, speculative
recovery can be falsely and repeatedly aborted, causing an
increased failover latency. In all these cases, speculative re-
covery should fall back to REDS by using a timeout to force
failover when recovery is aborted repeatedly.

5 Implementation

We implemented a prototype speculative recovery system,
SpecREDS, and deployed it on AWS EC2. The instance pool
is implemented as a docker container pool on top of EC2
compute instances, where application images can be directly
pulled from the docker registry. The failure monitor is imple-
mented as a simple daemon process that pings the application
instances with read-only queries to determine connectivity
and health. As an independent component, the monitor also
needs to be fault-tolerant. Many orchestration architectures
provide fault-tolerant monitors such as those in EC2 Auto
Scaling groups, Kubernetes, etc.

Our implementation of the disaggregated storage layer is
based on Ceph [68], an open-source distributed storage sys-
tem. On top of its backend object store called RADOS, Ceph
provides highly durable and highly available block storage
called rbd (Rados Block Device) that can remotely attach a
rbd disk as a Linux block device through its kernel driver.
SpecREDS focuses on the block interface due to its prevalent
adoption on cloud and its simpler interface. We believe that
the concept of speculative recovery can be applied to other
cloud storage interfaces like network file systems [17] and
object stores [19]. The implementation is based on Ceph re-
lease v16.2.4. The artifact of SpecREDS is publicly available.
Please refer to the appendix for the artifact description.

Background on Ceph rbd. We give a short background
on rbd necessary to understand our implementation. rbd also
provides disk clone functionality: a disk snapshot is first taken,
then a disk clone can be created from that snapshot. While
clone creation is fast, rbd ’s native clone implementation has
the performance problems of copying over the network and
serialized concurrent COW writes, as discussed in §4.2.

Disk P alloc. table

Block 0: shard X

Block 1: shard Y

Block 2: shard Z

Block 3: shard Y

Data shard Y

Block 1 (P)

Block 1 (C)

Metadata shard
Disk P: dirty

Child (C)
Parent (P)

(1)
(2)

(3)

(4)
(1)(2)

(3)

Figure 3: Parent and child write path after super. The
parent and child disks are assigned ID P and C, respectively.
Only the first parent write to shard Y performs steps 3 and 4.

rbd implements the functionality of an “allocation table”
with two separate utilities. First, each rbd disk has an object
map, a bit map indicating the existence of the disk’s data ob-
jects. A COW write needs to update the child’s object map
by marking the corresponding bit “dirty”, which is a block-
ing operation due to locking, causing the effect of serialized
concurrent COW writes. Second, the location of a data object
is calculated deterministically by an algorithm based on the
object name and the cluster layout [69]. Since objects have
unique names, a child object will likely be placed on a differ-
ent shard than its parent. For clarity, this section assumes that
a rbd disk has an “allocation table” that combines the two
utilities, as shown in Figure 3.

In addition, a rbd clone disk depends on its parent snap-
shot, and such dependency prevents the parent from deletion
unless the cloned child is deleted first. As a result, for repeated
failovers, the latest child will carry a chain of parent depen-
dencies. These parents keep taking up space even though they
are not needed anymore, as well as the child keeps suffering
from COW penalties even after the failover is complete.

Collocation by reusing parent’s “allocation table.” To
accomplish this, super directly assigns the parent disk to
the child, including all data objects and the object map. This
achieves two things. First, a COW write never needs to up-
date the object map since by reusing parent’s object map, the
corresponding bit is already updated by the parent. Second,
the child uses the same object names as the parent to locate
objects, allowing for collocation of parent and child objects.

To differentiate, the parent and the child are assigned a
unique ID. When accessing the disk, they identify themselves
to the storage cluster using that ID. This means that creating
the child disk is fast because it only involves the assignment
of a unique ID. The names of the objects are tagged with the
unique ID to identify the object ownership (parent or child).

To determine how to serve a child I/O, the data shard first
checks the existence of the child object and the corresponding
parent object by directly querying the backend object store.
COW is performed for a child write if the child object does
not exist but the parent object does. Figure 3 demonstrates
this process (dashed red arrows). By reusing the allocation
table, child access will be directed to the same shard holding
the corresponding parent objects (steps 1 and 2) and thus
allowing for collocation (step 3).

Object size. Another factor affecting COW performance is
the object size since objects are the minimal unit of copying.
But if a COW write contains some whole objects, copying is
unnecessary for these objects. With large objects, data copying
imposes huge overhead; with small objects, writes are more
likely to contain whole objects to reduce copying overhead,
but the overhead of allocating more smaller objects could
overwhelm and thus degrade the overall performance. Our
benchmark shows that rbd ’s default 4 MB object size is
not ideal for many database applications whose default page
size is only 4 KB to 64 KB. The the sweet spot for these
applications is around 64 KB.

Dirty bit tracking and atomic promotion. collapse
elects the data shard that stores the parent disk’s metadata
(which is a single object) as the tracking shard. When super
is invoked on the parent disk, its unique ID is registered to the
tracking shard and then broadcasted to all data shards. The
data shards then add the ID to a tracking list. When receiving
a write with ID in the tracking list, the data shard must ask
the tracking shard for permission to proceed (blue solid arrow,
step 3 in figure 3). If permission is granted, the data shard can
then submit this write and remove the ID from the tracking
list; otherwise, this write must be rejected.

The tracking shard, by default, grants permission to any
data shard requesting (step 4 in figure 3), sets the dirty bit
associated with the ID, and notifies the other data shards to
remove the ID from their tracking lists. The tracking shard
also persists the dirty bit by writing it to the disk’s metadata,
allowing it to be replicated along with the metadata. In case
the current tracking shard fails, another shard holding a replica
of the metadata is elected the new tracking shard.

When initiating an atomic promotion, based on the dirty bit
status of the parent disk, the tracking shard performs either of
the two actions atomically: (1) if the dirty bit is set, the track-
ing shard returns an error to indicate that promotion is rejected
and the child disk should be deallocated; (2) otherwise, the
tracking shard starts rejecting all requests-for-permission to
the parent disk and acknowledges that promotion can proceed.

Dirty bit tracking adds one additional RTT to at most the
number of writes equivalent to the number of data shards
in the cluster. Our evaluation shows that this has negligible
performance impact (§6.2).

Deallocation with garbage collection. collapse deallo-
cates the child disk by asynchronously garbage-collecting
all objects associated with the child’s unique ID. Similarly,
the parent disk is deallocated by asynchronously garbage-
collecting parent objects that have a corresponding child ob-
ject and reassigning those who do not to the child’s ownership.
After this process is complete, the child no longer depends
on the parent and no longer needs to do COW. Asynchronous
garbage collection minimizes the performance impact to the
storage cluster’s normal operation.

6 Evaluation

This evaluation answers the following questions:

• How does the performance of collocated-clone disks com-
pare to that of normal disks and general-clone disks? (§6.2)

• What is the recovery latency for various applications and
failure scenarios when using a collocated-clone disk com-
pared to using a normal disk and a general-clone disk?
(§6.3)

• How does the failover latency of SpecREDS compare to
REDS? (§6.4)

• What are the overheads of SpecREDS over REDS in terms
of application performance after recovery, resource over-
head, and overhead due to false positives? (§6.5)

We find that our implementation of a collocated-clone disk
provides disk-level performance close to that of a normal
disk and is much faster than a general-clone disk (§6.2).
This performance translates to recovery latency when us-
ing a collocated-clone disk being close to using a normal
disk (§6.3). This similar recovery latency leads to specula-
tive recovery always providing failover latency comparable to
REDS and often providing much lower failover latency across
a wide variety of failover scenarios (§6.4).

6.1 Experimental Setup
We conducted our evaluation on EC2. The SpecREDS storage
layer has four storage shards by EC2 instance type i3en with
access to 7500 GB NVMe local SSDs and 25 Gbps network
bandwidth. As shown in Table 1, our storage layer delivers
performance comparable to popular cloud storage services.

For the primary and backup instances, we use the m5n
instance type with 16 vCPUs, 64 GB RAM, and 25 Gbps net-
work bandwidth, and for the application clients, we use an
instance with 32 vCPUs, 128 GB RAM, and 25 Gbps network
bandwidth. All instances are in the same availability zone
as each other and the storage layer. We also set up a simple
docker orchestrator environment on the primary and backup
instances where applications are running in docker contain-
ers. The client instance runs oltpbench [31] with 100 virtual
clients sending requests to the active instance. The primary is
initially the active instance, while the failover process with
our orchestrator makes the backup the active instance as it
completes. The failure monitor, which pings the instances
every second, runs as a separate daemon process on the client
machine. We believe that this setup mimics existing systems
like EC2 Auto Scaling groups and GCP Kubernetes Engine.

We pick three representative database applications: MySQL
with InnoDB, PostgreSQL, and MariaDB with RocksDB.
These applications meet the requirements of REDS and are
widely used. The oltpbench client loads these application by
running the TPC-C workload [65].

KIOPS Tput (MB/s) Latency (ms)
EBS gp3 16/16 1000/1000 0.5/0.7
GCP SSD PD 15/15 245/245 0.6/0.7
Our storage layer 75/26 1000/630 0.38/2.0

Table 1: Raw disk performance. Comparing the raw disk
performance of EBS General Purpose SSD (gp3), GCP SSD
Persistent Disk, and our storage layer. Numbers in each cell
are for read/write.

6.2 Disk-level Performance
To build up to an end-to-end availability comparison, we start
by showing a disk-level performance comparison between a
regular, non-COW rbd disk, a collocated-clone disk imple-
mented with super, and a general-clone disk implemented
with native rbd cloning (rbd-clone). We use an object size
of 64 KB for all disks. The experiments examine single write
performance, concurrent write performance, performance for
real recovery workloads, and the impact of the dirty bit on the
parent disk performance. Our results indicate that the main
source of improvement comes from the elimination of object
map update operations, which could increase the latency of a
single write by 6.1x under highly parallel I/Os.

Single COW write latency. As the first set of experiments,
we isolate the latency impact of the COW designs when there
is no concurrency with an experiment that issues single writes,
where only a single write is in flight at a time. Figure 4a
compares the mean latency (averaged over 20,000 writes) of
COW writes with super and rbd-clone to normal writes
with rbd for varying write sizes. A closed-loop client issues
writes to random offsets.

For writes smaller than the object size, write latency on
super is 14% higher than rbd while rbd-clone is 220%
higher. super provides this similar performance because it
avoids an object map update operation and does the copy
locally instead of having to transmit data over the network.
When the write size equals the object size (64 KB), no COW
is necessary. This isolates the latency effect of object map up-
date operations. For rbd-clone, this results in 2 ms of added
latency (the update operation is basically another write), while
super has identical performance to normal writes because it
does not need to update the object map.

Concurrent COW writes. Next, we evaluate the latency
of COW write under varying levels of concurrency. Figure 4b
shows the mean latency of 4 KB COW writes as we vary
concurrency from 1 write in flight at a time up to 32 writes
in flight. A closed-loop client simultaneously issues n writes
to random offsets, waits for all of their responses, and then
repeats this process.

The latency of rbd-clone increases sharply with concur-
rency: the mean latency with 32 writes in flight is 6.1x higher
than the mean latency with 1 write in flight. We found that
this high latency is due to parallel object map update opera-

4 8 16 32 48 64
Write size (KB)

0

2

4

6

M
ea

n
la

te
nc

y
(m

s)

rbd

(a) Single writes

1 2 4 8 16 32
of concurrent writes

0

10

20

30

40

50
super

(b) Concurrent writes

80 90 95 99 99.999.99

Percentile

0
20
40
60
80
100

rbd-clone

(c) Read CDF

80 90 95 99 99.999.99

Percentile

0
100
200
300
400
500

(d) Write CDF

Figure 4: COW performance comparison. (a) Latency for varying size COW writes with no concurrency; (b) Latency for 4 KB
COW writes under increasing levels of concurrency; (c)/(d) Read/write CDFs from replaying a trace of recovery operations.

tions being serialized by the client’s disk driver. In contrast,
super provides similar performance to rbd under concur-
rency because it avoids updates to the object map: both have
comparable mean latency that ranges from 2 ms with a con-
currency of 1 to 4 ms with a concurrency of 32.

Performance on real recovery workloads. To quantify
how these improvements of super translate to performance in
real application recovery workloads, Figures 4c and 4d show
read and write CDFs collected from replaying a recovery
workload trace with fio [32]. The trace captures the recovery
work for a Postgres database with 20 GB TPCC data and 1
GB of WAL at the time of an injected kernel panic failure.

For read, all three disks have similar read latency up to
p99.9. super and rbd-clone have higher read latency be-
yond p99.9 due to the overhead of COW that may occupy a
majority of disk throughput under high load and cause heavy
I/O contention. For write, the write latency of rbd-clone is
much higher than rbd. In contrast, the write latency of super
is comparable to rbd up to p99.9.

Dirty bit tracking overhead. As discussed in §5, the dirty
bit tracking mechanism of SpecREDS may impact the perfor-
mance of the parent disk because some parent writes require
an additional round trip to set the dirty bit. This could become
a problem if the primary instance self-heals and continues
serving the application. We performed an experiment that
invokes super every second while measuring raw IOPS on
the parent disk. Even under such an extreme condition, the
parent disk achieves the same IOPS numbers. Thus, the only
overhead of dirty bit tracking is increased latency for the few
writes that set the dirty bit when the primary is still alive.

Summary. We believe that these disk-level improvements
of super, as shown in Figure 4, can achieve recovery latency
very close to a regular rbd disk in real failure scenarios, en-
abling end-to-end application availability improvement for
SpecREDS, as presented in the next two subsections.

6.3 Application Recovery Latency
We ran a series of experiments to understand how disk-
level performance of the three disk types (rbd, super, and
rbd-clone) affects recovery latency as we vary failure type
and failure timing. SpecREDS operates on a disk clone
(super by default or rbd-clone) with COW penalties, which
increases application recovery latency compared to REDS us-
ing a regular rbd disk without COW. It is critical for such
latency increase to be relatively minor to show practical im-
provement in end-to-end application availability (§6.4)

For these experiments, the application initially runs in a
container on the primary instance, handling requests from the
clients. Then, a failure is injected to the primary. To isolate
recovery latency, the failure monitor detects loss of connec-
tivity with no timeout and immediately initiates failover, and
the application restarts on the backup instance. The recovery
latency is measured at the client side as the length of time
between when the TPC-C throughput drops to zero and when
it resumes. Failures are injected either by synchronously stop-
ping the docker container and unmounting the disk (clean
failures) or by causing a kernel panic (unclean failures).

We found the type of failure has a major effect on recovery
latency. Stopping the primary container tries to gracefully shut
down the application (this is the case for MariaDB but not
for MySQL and Postgres), and unmounting the disk flushes
file system cache such that the file system is not corrupted.
Therefore, the disk is in a cleaner state and can recover faster.
Kernel panic, on the other hand, immediately crashes the
instance without giving a chance to clean up, leaving the disk
in an unclean state that takes longer for the backup to recover.
In addition, we found the size of WAL at time of failure also
significantly impacts recovery latency.

Our full range of experiments have recovery latencies that
vary from 1–70 s when run on rbd. We capture block-level
traces of those recovery workloads with blktrace and then re-
play them with fio on rbd, super, and rbd-clone. Replaying
traces ensures the workload is identical for all three disks.

S/.2G S/1G P/1G S/.4G S/2G P/5G S/5G P/1G P/5G
0 0

40 40

80 80

120 120

160 160

R
ec

ov
er

y
la

te
nc

y
(s

) MySQL Postgres MariaDB

rbd super rbd-clone

Figure 5: Application recovery latency from various disk
states. Recovery latency is shown for our three applications
running on rbd, super, and rbd-clone. Failures are injected
using docker stop (S) or a kernel panic (P). Labels are failure
types followed by WAL size in GB.

To make results legible while demonstrating the effect of
varying WAL sizes and failure types, we select three scenarios
to show for each application. The recovery latency for each
disk with these scenarios is shown in Figure 5. In all cases, we
see that super improves performance over rbd-clone. This
is especially pronounced for Postgres whose recovery work-
load is generally more write-intensive, exacerbating the write
performance bottlenecks in rbd-clone shown in §6.2. Fur-
ther, recovery on super is only slightly slower than recovery
on rbd by 13% on average.

6.4 End-to-end Failover Latency

To quantify the effect of speculative recovery for complete
end-to-end failover scenarios, we simulated various failover
scenarios and compare the latency across REDS (using rbd),
SpecREDS (using super by default), SpecREDS (using
rbd-clone), and the oracle model (using rbd). The oracle
model shows the lower bound on failover latency: it runs re-
covery on a rbd disk immediately after a primary issues its
last write (or simply waits for primary to come back online,
whichever is shorter). Thus, the oracle shows failover latency
without either REDS’s timeout or SpecREDS’s slower disk
performance. On the other hand, REDS initiates recovery
after a full timeout, while SpecREDS initiates much sooner
after only one second of an unresponsive ping.

The simulations explored three variables: the primary-
is-failed timeout, the recovery latency for the backup, and
if/when the primary self-heals. Results are divided into broad
categories depending on the timeout length (short, medium,
or long), recovery length (short or long), and whether the pri-
mary self-heals after the timeout but before backup recovery
completes (true or false positive recovery for REDS). Results
with a long timeout (e.g., the Kubernetes default timeout of
five minutes) are similar to a medium timeout but have even
higher failover latency for REDS, so we only show results for
a medium timeout. Results with false positive recovery for

long short long long (FP) short
Recovery length

0 0

40 40

80 80

120 120

160 160

A
pp

lic
at

io
n

un
av

ai
la

bi
lit

y
(s

)

Timeout=1min Timeout=5s

(I) (II) (III) (IV) (V)

REDS
SpecREDS (rbd-clone)

SpecREDS
Oracle

Figure 6: End-to-end failover latency. Representative
failover scenarios, picked by varying the lengths of time-
out and recovery. Bar group IV shows a false positive (FP)
failover for REDS

REDS all similarly inflate only the latency of REDS, so we
only show one of these results. This leads to five categories.

Figure 6 shows a representative result from each of these
five categories. The medium timeout is one minute and the
short timeout is five seconds. The recovery latencies are
picked from the results in §6.3. The long recovery is from
Postgres with an unclean failure and a 5 GB WAL (around 70
seconds of recovery latency on rbd). The short recovery is
from Postgres with a clean failure and a 0.4 GB WAL (around
8 seconds on rbd).

The two leftmost bar groups show scenarios with medium
timeouts and demonstrate one major part of SpecREDS’s
availability improvement over REDS. Because SpecREDS
starts recovery early without waiting for a full timeout, it
completes failover much sooner and thus significantly reduces
application unavailability.

The three rightmost bars in Figure 6 demonstrate short
timeout failure scenarios. Bar groups III and V shows similar
performance for REDS and SpecREDS with a long (III) or
short (V) recovery. In these cases, SpecREDS start recovery
slightly sooner than REDS. But, its recovery takes slightly
longer because its super disk is slightly slower than the rbd
disk used by REDS. With a long recovery (III), this makes
REDS’s unavailability marginally shorter than SpecREDS.
With a short recovery (V), this makes SpecREDS’s unavail-
ability marginally shorter than REDS. Finally, bar group IV
shows a false positive failover where the primary is available
again (we used 15 seconds for illustration) shortly after the
timeout. SpecREDS decreases unavailability considerably in
this scenario by allowing the primary to continue instead of
committing to recovery on the backup with no turning back.

Overall, there are three takeaways. First, the failover latency
of SpecREDS (rbd-clone) is consistently the highest, indi-
cating that the improved performance of the super disk is the
key to achieving the availability improvement of SpecREDS.
Second, SpecREDS achieves significantly lower failover la-
tency when REDS uses a medium timeout (bar groups I and

0 20 40
Time after recovery (s)

0

1

2

3

4
T

hr
ou

gh
pu

t (
K

re
q/

s)

REDS
SpecREDS
SpecREDS(rbd-clone)

Figure 7: Throughput after recovery. Time 0 is right after
recovery completes and clients resume.

II) because this timeout dominates REDS’s unavailability;
SpecREDS also achieves lower failover latency for false posi-
tives when REDS uses a short timeout (IV), while achieving
similar failover latency in other cases (III and V). Third, Spe-
cREDS is always close to the oracle lower bound, suggesting
it achieves most of the possible availability improvement for
a REDS-based fault tolerance scheme.

6.5 Other SpecREDS Overheads
To understand the other overheads of SpecREDS, we evalu-
ated application performance immediately after recovery is
complete, analyzed production health monitor logs to esti-
mate the resource overhead of SpecREDS, and discussed the
performance overhead on the storage layer’s normal operation
due to false positives.

Application performance after recovery. After the
backup instance completes recovery and gets promoted,
collapse asynchronously transfers parent objects to the
child. During this time, COW is still used for writes that
go to objects whose ownership has not yet been transferred.
Figure 7 compares application performance following recov-
ery (Postgres, unclean failure with 1 GB WAL) on REDS,
SpecREDS, and SpecREDS (rbd-clone). SpecREDS using
rbd-clone has low throughput due to the continued impact
of COW because the parent-child dependency still exists, as
discussed in §5. In contrast, we see that SpecREDS has a
throughput curve very similar to REDS. Thus, we conclude
that SpecREDS adds negligible overhead to application per-
formance after recovery.

Resource overhead of SpecREDS. Due to running two
instances concurrently during speculative recovery and the
possibility of aborted recovery, SpecREDS incurs additional
resource overhead compared to REDS. The key to under-
standing SpecREDS’s resource overhead is to see how often
it would be incurred. We analyzed a complete collection of
health monitor logs from more than 80 production caching
servers for the past five years. On average, a server is reported

inaccessible once every 2.8 days. Of these reported events,
90% are transient: the server becomes accessible again within
10 seconds. Even with such a high false positive rate, the
frequency of possible server inaccessible event is quite small.
The resource overhead of SpecREDS would be, on average, an
unnecessary backup instance allocation for up to 10 seconds
once every 3.1 days: a 0.004% overhead.

Performance overhead due to false positives. False pos-
itives that trigger speculative failover that is aborted im-
pose performance overhead on the storage layer due to
garbage collection (GC). This may be troublesome since
short-lived failures are common in today’s data center net-
works [21,48,54,60], which could introduce frequent GC that
could harm the storage layer’s normal operation. Our log anal-
ysis described above, however, found that a server is reported
inaccessible once every 2.8 days on average, meaning that
SpecREDS incurs GC overhead only once every few days.
Moreover, GC incurs minor performance overhead, since GC
is asynchronous and thus does not block regular disk I/O
operations, as shown in Figure 7.

7 Related Work

This section reviews related work on application-level repli-
cation, state machine replication, virtual machine replication,
slow recovery in databases, shared storage clustering, disk
snapshotting, and other related uses of speculation within sys-
tems. The most closely related work is the industry’s adoption
of REDS, which is introduced in §2.2 and discussed exten-
sively throughout the paper.

Application-level replication. This is a widely imple-
mented technique for providing high-availability fault tol-
erance. SQL databases, including MySQL, PostgreSQL, Mi-
crosoft SQL Server, as well as NoSQL databases such as Mon-
goDB, replicate client transactions synchronously and persis-
tently to backups before responding to clients [7–10]. This can
provide excellent performance with failover latency shorter
than SpecREDS. However, it requires an extensive implemen-
tation for each individual application since the replication
logic and implementation are application-specific. Many use-
ful persistence applications do not provide high-availability
at the application layer, including SQLite, LevelDB, and
RocksDB [1, 3, 4, 6, 11]. In contrast, Both REDS and Spe-
cREDS support these applications without any modification
or explicit support, since they work at the block-device layer.

Application-level replication requires multiple application
instances at all times to provide fault tolerance: at least the
primary instance and one backup. In contrast, REDS and
SpecREDS only run a single instance almost at all times,
which makes it far cheaper.

Application-level replication may also have lower perfor-
mance in normal operation since it runs expensive replication
protocols for client requests. We believe that this argument

needs meticulous measurements to validate because REDS
and SpecREDS do not eliminate the need for a replication
protocol but instead runs it at the storage level. In addition,
the replicas in application-level replication can provide read-
only throughput. Though disaggregated storage can also offer
better disk-level read throughput from data replicas, single
application instance often cannot fully utilize it due to bottle-
necks at CPU and network bandwidth [41]

State machine replication (SMR). This technique pro-
vides high availability for applications that use its interface,
which is typically a log of requests executed in order [62].
SMR is typically implemented either using a consensus algo-
rithm like Paxos [44] or a primary-backup approach [24].
SMR can often provide shorter recovery times than Spe-
cREDS. But, like application-level replication, it requires
multiple instances and thus is more costly than SpecREDS.

Virtual machine (VM) replication. This technique pro-
vides application-agnostic high-availability fault toler-
ance [23, 29, 53, 63]. This technique replicates an entire
VM and thus can make any application or a collection of
applications fault tolerant. However, VM replication is heavy-
weight because it replicates the entire virtual machine (e.g.,
all changes to memory must be replicated before they are ex-
ternalized to provide linearizability). Also, it requires at least
two instances at all times to provide fault tolerance. Specu-
lative recovery supports the smaller set of applications that
are crash consistent, but is much lighter weight and provides
high availability at a much lower cost

Database slow recovery. This is a technique that precedes
the cloud by decades where logs are periodically shipped to a
backup that stores, but does not apply, them until a failover is
needed. This similarly requires fewer backup resources in the
normal case but results in slower recovery. REDS and Spe-
cREDS build on this technique to provide a similar tradeoff
more generally for any crash-consistent application and in a
cloud-native way by using disaggregated storage to provide
the backup its own copy of the disk instead of requiring any
computation from a backup.

Shared storage clustering. This technique allows a storage
volume to be attached to and accessible from multiple appli-
cation instances at the same time, enabling faster failover in a
clustered application setup without dismounting and remount-
ing the volume to another instance [51]. The cloud-native
version of this technique is “multi-attach” [14]. These tech-
niques require a standby backup instance, which is not the
case for REDS and SpecREDS.

Snapshots and checkpoints. Other forms of storage copy
such as snapshots and checkpoints are widely used for data
backup and rollback-based disaster recovery [38, 46, 67].
Many cloud platforms also support automatically taking snap-
shots of application disks on a user-specified schedule. How-

ever, this method does not provide linearizability amid failures
because updates following the latest snapshot will be lost.

Speculation. This is a widely used technique to accelerate
the performance of systems. Here we discuss a few of these
systems that inspired us. Zyzzyva [42] is a Byzantine fault tol-
erance SMR protocol where the replicas speculatively execute
client requests without agreeing on a single total ordering,
and it is then the client’s responsibility to observe and help
resolve any inconsistencies. Speculative recovery adopts a
similar idea that inconsistency can be allowed temporarily
and resolved later.

Speculative Paxos [59] is a SMR protocol where replicas
speculatively execute client requests based on the message
delivery order provided by the underlying network layer. In
cases where this order is violated, a reconciliation protocol is
in place to rollback inconsistent operations. Such inconsisten-
cies are detected before externalizing. Speculative recovery
is similar in that inconsistencies cannot be externalized. This
is also inspired by a similar idea in “rethink the sync” [55]
where external clients are the real observer of the system.

Speculation is also widely adopted for tolerating tail latency
in data-parallel computing such as Hadoop and Spark [64,70].
When a computing job is taking an unexpectedly long time,
the same job will be sent to another worker, and the system
uses the results from whichever finishes first. Hedged requests
are a similar technique that is used for applications that access
many backend systems [30] as well as other domains such as
RAID storage arrays [35, 36]. Speculative recovery is similar
to these techniques in that there are two racing paths and
latency is determined by the first path to finish.

8 Conclusions

We presented speculative recovery, a cheap, highly available
fault-tolerance scheme based on disaggregated storage for
crash-consistent applications. At the core of speculative re-
covery are the two new primitives, super and collapse, for
disaggregated storage. super provides performant disk clones
with the novel collocated-clone design, and collapse en-
sures application correctness, i.e., linearizability, in a failover
process with a disk-global dirty bit. Speculative recovery
achieves the same level of resource efficiency as REDS with
significantly higher availability in most failover scenarios.

Acknowledgments

We thank our anonymous shepherd and reviewers for their
many constructive comments. We thank Khiem Ngo and
Jeffrey Helt for their helpful discussions. We thank Cloud-
Lab [61] for providing compute resources used in the de-
velopment of this project. This material is based upon work
supported by the National Science Foundation under Grants
No. 1763546, 2028869, and 2106530.

References

[1] About SQLite. https://www.sqlite.org/about.
html.

[2] Docker. https://www.docker.com/.

[3] How we use RocksDB at Rockset. https://rockset.
com/blog/how-we-use-rocksdb-at-rockset/.

[4] LevelDB Store. https://activemq.apache.org/
leveldb-store.

[5] Linux Containers. https://linuxcontainers.org/.

[6] Litereplica: Replication Support for SQLite. http://
litereplica.io/sqlite-replication.html.

[7] Microsoft SQL Server Replication. https://
docs.microsoft.com/en-us/sql/relational-
databases/replication/sql-server-
replication?view=sql-server-ver15.

[8] MongoDB Replication. https://docs.mongodb.
com/manual/replication/.

[9] MySQL Replication. https://dev.mysql.com/doc/
refman/8.0/en/replication.html.

[10] PostgreSQL Replication. https://www.postgresql.
org/docs/9.2/runtime-config-replication.
html.

[11] rocksplicator, RocksDB Replication. https://github.
com/pinterest/rocksplicator.

[12] StatefulSets – Kubernetes. https://kubernetes.io/
docs/concepts/workloads/controllers/
statefulset/.

[13] Alexandru Agache, Marc Brooker, Alexandra Iordache,
Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and
Diana-Maria Popa. Firecracker: Lightweight virtual-
ization for serverless applications. In 17th USENIX
Symposium on Networked Systems Design and Imple-
mentation, NSDI ’20, pages 419–434, Santa Clara, CA,
February 2020. USENIX Association.

[14] Amazon. Attach a volume to multiple in-
stances with Amazon EBS Multi-Attach.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/ebs-volumes-multi.html.

[15] Amazon. EC2 Auto Scaling groups. https://
docs.aws.amazon.com/autoscaling/ec2/
userguide/AutoScalingGroup.html.

[16] Amazon. Elastic Block Storage. https://aws.
amazon.com/ebs.

[17] Amazon. Elastic File System. https://aws.amazon.
com/efs/.

[18] Amazon. Elastic IP addresses. https://
docs.aws.amazon.com/AWSEC2/latest/
UserGuide/elastic-ip-addresses-eip.html.

[19] Amazon. Simple Storage Service (S3). https://aws.
amazon.com/s3/.

[20] Michael Baentsch, Georg Molter, and Peter Sturm. Intro-
ducing Application-Level Replication and Naming into
Today’s Web. Computer Networks and ISDN Systems,
28(7–11):921–930, May 1996.

[21] Peter Bailis and Kyle Kingsbury. The network is reli-
able: An informal survey of real-world communications
failures. Queue, 12(7):20–32, 2014.

[22] Magdalena Balazinska, Hari Balakrishnan, Samuel Mad-
den, and Michael Stonebraker. Fault-Tolerance in the
Borealis Distributed Stream Processing System. In Pro-
ceedings of the 2005 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’05, page
13–24, New York, NY, USA, 2005. Association for Com-
puting Machinery.

[23] T. C. Bressoud and F. B. Schneider. Hypervisor-Based
Fault Tolerance. In Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles, SOSP ’95,
page 1–11, New York, NY, USA, 1995. Association for
Computing Machinery.

[24] Navin Budhiraja, Keith Marzullo, Fred B Schneider, and
Sam Toueg. Distributed systems. ch. The Primary-
Backup Approach, pages 199–216, 1993.

[25] Ceph. rbd Persistent Read-only Cache.
https://docs.ceph.com/en/latest/rbd/
rbd-persistent-read-only-cache/.

[26] Mike Y. Chen, Anthony Accardi, and Dave Patterson.
Path-Based Failure and Evolution Management. In First
Symposium on Networked Systems Design and Imple-
mentation, NSDI ’04, San Francisco, CA, March 2004.
USENIX Association.

[27] Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic Crash Consistency. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, page 228–243, New York,
NY, USA, 2013. Association for Computing Machinery.

[28] Brian Cho and Ergin Seyfe. Taking Advantage of a
Disaggregated Storage and Compute Architecture. In
Spark+AI Summit 2019, SAIS ’19, April 2019.

https://www.sqlite.org/about.html
https://www.sqlite.org/about.html
https://www.docker.com/
https://rockset.com/blog/how-we-use-rocksdb-at-rockset/
https://rockset.com/blog/how-we-use-rocksdb-at-rockset/
https://activemq.apache.org/leveldb-store
https://activemq.apache.org/leveldb-store
https://linuxcontainers.org/
http://litereplica.io/sqlite-replication.html
http://litereplica.io/sqlite-replication.html
https://docs.microsoft.com/en-us/sql/relational-databases/replication/sql-server-replication?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/replication/sql-server-replication?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/replication/sql-server-replication?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/relational-databases/replication/sql-server-replication?view=sql-server-ver15
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/replication/
https://dev.mysql.com/doc/refman/8.0/en/replication.html
https://dev.mysql.com/doc/refman/8.0/en/replication.html
https://www.postgresql.org/docs/9.2/runtime-config-replication.html
https://www.postgresql.org/docs/9.2/runtime-config-replication.html
https://www.postgresql.org/docs/9.2/runtime-config-replication.html
https://github.com/pinterest/rocksplicator
https://github.com/pinterest/rocksplicator
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volumes-multi.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volumes-multi.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://aws.amazon.com/ebs
https://aws.amazon.com/ebs
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-ip-addresses-eip.html
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://docs.ceph.com/en/latest/rbd/rbd-persistent-read-only-cache/
https://docs.ceph.com/en/latest/rbd/rbd-persistent-read-only-cache/

[29] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike
Feeley, Norm Hutchinson, and Andrew Warfield. Re-
mus: High Availability via Asynchronous Virtual Ma-
chine Replication. In 5th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’08,
San Francisco, CA, April 2008. USENIX Association.

[30] Jeffrey Dean and Luiz André Barroso. The Tail at Scale.
Communications of the ACM, 56(2):74–80, February
2013.

[31] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino,
and Philippe Cudré-Mauroux. OLTP-Bench: An Exten-
sible Testbed for Benchmarking Relational Databases.
Proceedings of the VLDB Endowment, 7(4):277–288,
2013.

[32] fio. Flexible I/O tester. https://fio.readthedocs.
io/en/latest/fio_doc.html.

[33] Google. GCP Persistent Disks. https://cloud.
google.com/persistent-disk.

[34] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Gary Grider, Parks M. Fields, Kevin
Harms, Robert B. Ross, Andree Jacobson, Robert Ricci,
Kirk Webb, Peter Alvaro, H. Birali Runesha, Mingzhe
Hao, and Huaicheng Li. Fail-Slow at Scale: Evidence
of Hardware Performance Faults in Large Production
Systems. In 16th USENIX Conference on File and Stor-
age Technologies, FAST ’18, pages 1–14, Oakland, CA,
February 2018. USENIX Association.

[35] Mingzhe Hao, Huaicheng Li, Michael Hao Tong,
Chrisma Pakha, Riza O. Suminto, Cesar A. Stuardo,
Andrew A. Chien, and Haryadi S. Gunawi. MittOS:
Supporting Millisecond Tail Tolerance with Fast Reject-
ing SLO-Aware OS Interface. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 168–183, New York, NY, USA, 2017. Association
for Computing Machinery.

[36] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Ed-
berg Halim, Henry Hoffmann, and Haryadi S. Gunawi.
LinnOS: Predictability on Unpredictable Flash Storage
with a Light Neural Network. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion, OSDI ’20, pages 173–190. USENIX Association,
November 2020.

[37] Maurice Herlihy and Jeannette M. Wing. Linearizability:
A Correctness Condition for Concurrent Objects. ACM
Transactions on Programming Languages and Systems,
12(3):463–492, 1990.

[38] John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Side-
botham, and Michael J. West. Scale and Performance
in a Distributed File System. ACM Transactions on
Computer Systems, 6(1):51–81, feb 1988.

[39] Yige Hu, Zhiting Zhu, Ian Neal, Youngjin Kwon, Tianyu
Cheng, Vijay Chidambaram, and Emmett Witchel.
TxFS: Leveraging File-System Crash Consistency to
Provide ACID Transactions. In 2018 USENIX Annual
Technical Conference, USENIX ATC ’18, pages 879–
891, Boston, MA, July 2018. USENIX Association.

[40] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray Failure: The Achilles’ Heel of Cloud-
Scale Systems. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems, HotOS ’17, page
150–155, New York, NY, USA, 2017. Association for
Computing Machinery.

[41] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu
John, and Sanjeev Kumar. Flash Storage Disaggregation.
In Proceedings of the Eleventh European Conference on
Computer Systems, EuroSys ’16, New York, NY, USA,
2016. Association for Computing Machinery.

[42] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: Speculative
Byzantine Fault Tolerance. In Proceedings of Twenty-
First ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, page 45–58, New York, NY, USA,
2007. Association for Computing Machinery.

[43] Kubernetes. kube-controller-manager. https://
kubernetes.io/docs/reference/command-line-
tools-reference/kube-controller-manager/.

[44] Leslie Lamport. Paxos Made Simple, Fast, and Byzan-
tine. In Procedings of the 6th International Confer-
ence on Principles of Distributed Systems, OPODIS ’02,
pages 7–9, 2002.

[45] Sergey Legtchenko, Hugh Williams, Kaveh Razavi,
Austin Donnelly, Richard Black, Andrew Douglas,
Nathanael Cheriere, Daniel Fryer, Kai Mast, An-
gela Demke Brown, Ana Klimovic, Andy Slowey, and
Antony Rowstron. Understanding Rack-Scale Disaggre-
gated Storage. In 9th USENIX Workshop on Hot Top-
ics in Storage and File Systems, HotStorage ’17, Santa
Clara, CA, July 2017. USENIX Association.

[46] LVM-HOWTO. Taking a Backup Using Snap-
shots. https://tldp.org/HOWTO/LVM-HOWTO/
snapshots_backup.html.

https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://cloud.google.com/persistent-disk
https://cloud.google.com/persistent-disk
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
https://tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html

[47] Filipe Manco, Costin Lupu, Florian Schmidt, Jose
Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata,
Costin Raiciu, and Felipe Huici. My VM is Lighter (and
Safer) than Your Container. In Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17,
page 218–233, New York, NY, USA, 2017. Association
for Computing Machinery.

[48] Shicong Meng, Arun K. Iyengar, Isabelle M. Rouvellou,
Ling Liu, Kisung Lee, Balaji Palanisamy, and Yuzhe
Tang. Reliable State Monitoring in Cloud Datacenters.
In Proceedings of the 2012 IEEE Fifth International
Conference on Cloud Computing, CLOUD ’12, pages
951–958, 2012.

[49] Microsoft. Azure blob storage. https://azure.
microsoft.com/en-us/services/storage/blobs.

[50] Microsoft. High availability in Azure Database
for PostgreSQL – Single Server. https://
docs.microsoft.com/en-us/azure/postgresql/
concepts-high-availability.

[51] Microsoft. Use Cluster Shared Volumes in a
failover cluster. https://docs.microsoft.com/
en-us/windows-server/failover-clustering/
failover-cluster-csvs.

[52] Jaehong Min, Ming Liu, Tapan Chugh, Chenxingyu
Zhao, Andrew Wei, In Hwan Doh, and Arvind Krishna-
murthy. Gimbal: Enabling Multi-Tenant Storage Disag-
gregation on SmartNIC JBOFs. In Proceedings of the
2021 ACM SIGCOMM 2021 Conference, SIGCOMM
’21, page 106–122, New York, NY, USA, 2021. Associ-
ation for Computing Machinery.

[53] Umar Farooq Minhas, Shriram Rajagopalan, Brendan
Cully, Ashraf Aboulnaga, Kenneth Salem, and Andrew
Warfield. RemusDB: Transparent High Availability for
Database Systems. Proceedings of the VLDB Endow-
ment, 4(11):738–748, August 2011.

[54] Srihari Nelakuditi, Sanghwan Lee, Yinzhe Yu, Zhi-Li
Zhang, and Chen-Nee Chuah. Fast Local Rerouting for
Handling Transient Link Failures. IEEE/ACM Transac-
tions on Networking, 15(2):359–372, April 2007.

[55] Edmund B. Nightingale, Kaushik Veeraraghavan, Pe-
ter M. Chen, and Jason Flinn. Rethink the Sync. In
Proceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation, OSDI ’06, page 1–14,
USA, 2006. USENIX Association.

[56] Haochen Pan, Jesse Tuglu, Neo Zhou, Tianshu Wang,
Yicheng Shen, Xiong Zheng, Joseph Tassarotti, Lewis

Tseng, and Roberto Palmieri. Rabia: Simplifying State-
Machine Replication Through Randomization. In Pro-
ceedings of the ACM SIGOPS 28th Symposium on Op-
erating Systems Principles, SOSP ’21, page 472–487,
New York, NY, USA, 2021. Association for Computing
Machinery.

[57] Colin Percival. EC2 boot time benchmark-
ing. https://www.daemonology.net/blog/2021-
08-12-EC2-boot-time-benchmarking.html.

[58] Thanumalayan Sankaranarayana Pillai, Vijay Chi-
dambaram, Ramnatthan Alagappan, Samer Al-Kiswany,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. All File Systems Are Not Created Equal:
On the Complexity of Crafting Crash-Consistent Ap-
plications. In 11th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’14, pages
433–448, Broomfield, CO, October 2014. USENIX As-
sociation.

[59] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr.
Sharma, and Arvind Krishnamurthy. Designing Dis-
tributed Systems Using Approximate Synchrony in Data
Center Networks. In 12th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’15,
pages 43–57, Oakland, CA, May 2015. USENIX Asso-
ciation.

[60] Rahul Potharaju and Navendu Jain. When the Network
Crumbles: An Empirical Study of Cloud Network Fail-
ures and Their Impact on Services. In Proceedings of the
4th Annual Symposium on Cloud Computing, SoCC ’13,
New York, NY, USA, 2013. Association for Computing
Machinery.

[61] Robert Ricci, Eric Eide, and CloudLab Team. Introduc-
ing CloudLab: Scientific Infrastructure for Advancing
Cloud Architectures and Applications. login USENIX
Magazine, 39(6), 2014.

[62] Fred B. Schneider. Implementing Fault-Tolerant Ser-
vices Using the State Machine Approach: A Tutorial.
ACM Computing Surveys, 22(4):299–319, December
1990.

[63] Rahul Singh, David Irwin, Prashant Shenoy, and K.K.
Ramakrishnan. Yank: Enabling Green Data Centers
to Pull the Plug. In 10th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI ’13,
pages 143–155, Lombard, IL, April 2013. USENIX As-
sociation.

[64] Riza O. Suminto, Cesar A. Stuardo, Alexandra Clark,
Huan Ke, Tanakorn Leesatapornwongsa, Bo Fu, Da-
niar H. Kurniawan, Vincentius Martin, Maheswara

https://azure.microsoft.com/en-us/services/storage/blobs
https://azure.microsoft.com/en-us/services/storage/blobs
https://docs.microsoft.com/en-us/azure/postgresql/concepts-high-availability
https://docs.microsoft.com/en-us/azure/postgresql/concepts-high-availability
https://docs.microsoft.com/en-us/azure/postgresql/concepts-high-availability
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-cluster-csvs
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-cluster-csvs
https://docs.microsoft.com/en-us/windows-server/failover-clustering/failover-cluster-csvs
https://www.daemonology.net/blog/2021-08-12-EC2-boot-time-benchmarking.html
https://www.daemonology.net/blog/2021-08-12-EC2-boot-time-benchmarking.html

Rao G. Uma, and Haryadi S. Gunawi. PBSE: A Ro-
bust Path-Based Speculative Execution for Degraded-
Network Tail Tolerance in Data-Parallel Frameworks.
In Proceedings of the 2017 Symposium on Cloud Com-
puting, SoCC ’17, page 295–308, New York, NY, USA,
2017. Association for Computing Machinery.

[65] TPC-C. An On-Line Transaction Processing Bench-
mark. http://www.tpc.org/tpcc/.

[66] Peng Wang, Kaiyuan Zhang, Rong Chen, Haibo Chen,
and Haibing Guan. Replication-Based Fault-Tolerance
for Large-Scale Graph Processing. In 2014 44th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN ’14, pages 562–573, 2014.

[67] Andrew Warfield, Russ Ross, Keir Fraser, Christian
Limpach, and Steven Hand. Parallax: Managing storage
for a million machines. In Proceedings of the 10th Con-
ference on Hot Topics in Operating Systems, HotOS ’05,
page 4, USA, 2005. USENIX Association.

[68] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell
D. E. Long, and Carlos Maltzahn. Ceph: A Scalable,
High-Performance Distributed File System. In Proceed-
ings of the 7th Symposium on Operating Systems Design
and Implementation, OSDI ’06, page 307–320, USA,
2006. USENIX Association.

[69] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, and
Carlos Maltzahn. CRUSH: Controlled, Scalable, Decen-
tralized Placement of Replicated Data. In Proceedings
of the 2006 ACM/IEEE Conference on Supercomputing,
SC ’06, pages 31–31, 2006.

[70] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy Katz, and Ion Stoica. Improving MapReduce
Performance in Heterogeneous Environments. In Pro-
ceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’08, page
29–42, USA, 2008. USENIX Association.

A Artifact Appendix

Abstract
The artifact provides a framework for evaluating SpecREDS
as shown in the evaluation section of the paper. The artifact in-
cludes the source code of SpecREDS’s disaggregated storage
layer (based on Ceph), configuration files and pre-captured
application recovery traces, and handy scripts for instrument-
ing the experiments. Readers can easily use this artifact to
reproduce figures shown in the paper.

Scope
There are two main claims from the paper that the artifact
seeks to validate: (1) the disk-level I/O performance of super,
our novel design and implementation of light-weight, fast disk
clones, is close to that of a regular, non-COW disk, while sig-
nificantly outperforming Ceph’s existing clone implementa-
tion rbd-clone; (2) SpecREDS using super can bring prac-
tical end-to-end application availability improvement over
REDS in various failover scenarios.

Specifically, the paper uses Figures 4 and 5 to prove the
point of the first claim and Figures 6 and 7 to prove the second
claim. The artifact contains experiments to reproduce these
four figures, and readers should be able to compare them with
the original figures in the paper to validate the claims.

Contents
The artifact contains the following items

• The source code of SpecREDS’s disaggregated storage

• A simple tool for measuring disk-level performance

• Pre-configured configs, disk images, and traces

• Scripts for instrumenting all experiments

• Detailed readmes

Hosting
The artifact is hosted on our public GitHub repository
at https://github.com/princeton-sns/specreds. The
tag for the OSDI/ATC artifact evaluation is atc22ae. To get
started, please follow the detailed instructions in the repo.

Requirements
The artifact does not require special hardware or software,
but we highly recommend running the artifact on CloudLab
with a c220g2 or c220g5 machine where the artifact is tested
to be reproducible. If not available, we recommend using a
machine with at least 16 CPU cores, 64 GB memory, 400 GB
of free space on an SSD, and Ubuntu 20.04. We also provide
a qcow2 image for booting up a QEMU VM.

http://www.tpc.org/tpcc/
https://github.com/princeton-sns/specreds

	Introduction
	Highly Available Applications
	Application-level Replication
	Recovery From Disaggregated Storage
	Lower Application Availability

	Introducing Speculative Recovery
	Design
	Components and Overview
	super: Creating a Disk Superposition
	Collocated-Clone

	collapse: Collapsing a Superposition
	Correctness and the Failure Model

	Implementation
	Evaluation
	Experimental Setup
	Disk-level Performance
	Application Recovery Latency
	End-to-end Failover Latency
	Other SpecREDS Overheads

	Related Work
	Conclusions
	Artifact Appendix

