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Abstract
We describe the design, implementation, and evaluation
of Occult (Observable Causal Consistency Using Lossy
Timestamps), the first scalable, geo-replicated data store that
provides causal consistency to its clients without exposing
the system to the possibility of slowdown cascades, a key
obstacle to the deployment of causal consistency at scale.
Occult supports read/write transactions under PC-PSI, a
variant of Parallel Snapshot Isolation that contributes to
Occult’s immunity to slowdown cascades by weakening how
PSI replicates transactions committed at the same replica.
While PSI insists that they all be totally ordered, PC-PSI
simply requires total order Per Client session. Nonetheless,
Occult guarantees that all transactions read from a causally
consistent snapshot of the datastore without requiring any co-
ordination in how transactions are asynchronously replicated.

1 Introduction
Causal consistency [7] appears to be ideally positioned to
respond to the needs of the sharded and geographically
replicated data stores that support today’s large-scale web
applications. Without imposing the high latency of stronger
consistency guarantees [30, 38], it can address many issues
that eventual consistency leaves unresolved. This brings clear
benefits to users and developers: causal consistency is all
that is needed to preserve operation ordering and give Alice
assurance that Bob, whom she had defriended before posting
her Spring-break photos, will not be able to access her
pictures, even though Alice and Bob access the photo-sharing
application using different replicas [13, 20, 39]. Yet, causal
consistency has not seen widespread industry adoption.

This is not for lack of interest from the research commu-
nity. In the last few years, we have learned that no guarantee
stronger than real-time causal consistency can be provided
in a replicated data store that combines high availability with
convergence [43], and that, conversely, it is possible to build
convergent causally-consistent data stores that can efficiently
handle a large number of shards [10, 14, 27, 28, 39, 40].

We submit that industry’s reluctance to deploy causal
consistency is in part explained by the inability of its current
implementations to comply with a basic commandment
for scalability: do not let your performance be determined

by your slowest component. In particular, current causal
systems often prevent a shard in replica R from applying
a write w until all shards in R have applied all the writes
that causally precede w. Hence, a slow or failed shard (a
common occurrence in any large-enough deployment) can
negatively impact the entire system, delaying the visibility of
updates across many shards and leading to growing queues
of delayed updates. As we show in Section 2, these effects
can easily snowball to produce the “slowdown cascades”
that Facebook engineers recently indicated [8] as one of the
key challenges in moving beyond eventual consistency.

This paper presents Occult (Observable Causal
Consistency Using Lossy Timestamps), the first geo-
replicated and sharded data store that provides causal
consistency to its clients without exposing the system to
slowdown cascades. To make this possible, Occult shifts the
responsibility for the enforcement of causal consistency from
the data store to its clients. The data store makes its updates
available as soon as it receives them, and causal consistency
is enforced on reads only for those updates that clients are
actually interested in observing. In essence, Occult decouples
the rate at which updates are applied from the performance
of slow shards by optimistically rethinking the sync [48]:
instead of enforcing causal consistency as an invariant of the
data store, through its read-centric approach Occult appears
to applications as indistinguishable from a system that does.

Because it never delays writes to enforce consistency,
Occult is immune from the dangers of slowdown cascades.
It may, however, delay read operations from shards that are
lagging behind to ensure they appear consistent with what
a user has already seen. We expect such delays to be rare
in practice because a recent study of Facebook’s eventually-
consistent production system found that fewer than six out
of every million reads were not causally consistent [42].
Our evaluation confirms this. We find that our prototype of
Occult, when compared with the eventually-consistent sys-
tem (Redis Cluster) it is derived from, increases the median
latency by only 50µs, the 99th percentile latency by only
400µs for a read-heavy workload (4ms for a write-heavy
workload), and reduces throughput by only 8.7% for a
read-heavy workload (6.9% for a write-heavy workload).

Occult’s read-centric approach, however, raises a thorny
technical issue. Occult requires clients to determine how their



local state depends on the state of the entire data store; such
global awareness is unnecessary in systems that implement
causal consistency within the data store, where simply
tracking the immediate predecessors of a write is enough to
determine when the write should be applied [39]. In principle,
it is easy to use vector clocks [29, 44] to track causal depen-
dencies at the granularity of objects or shards. However, their
overhead at the scale that Occult targets is prohibitive. Occult
instead uses causal timestamps that, by synthesizing a variety
of techniques for compressing dependency information, can
achieve high accuracy (reads do not stall waiting for updates
that they do not actually depend on) at low cost. We find
that 24-byte timestamps suffice to achieve an accuracy of
99.6%; 8 more bytes give an accuracy of 99.96%.

Causal timestamps also play a central role in Occult’s
support for scalable read-write transactions. Transactions
in Occult operate under a variant of Parallel Snapshot Isola-
tion [55]. Occult ensures that all transactions always observe
a consistent snapshot of the system, even though the datastore
no longer evolves through a sequence of monotonically
increasing consistent snapshots. It uses causal timestamps
to not only track transaction ordering but also atomicity (by
making writes of a transaction causally dependent on each
other). This novel approach is key to the scalability of Oc-
cult’s transactions and their immunity to slowdown cascades.
The responsibility for commit is again shifted to the client,
which uses causal timestamps to detect if a transaction has
observed an inconsistent state due to an ordering or atomicity
violation and, if so, aborts it. Committed writes instead
propagate asynchronously to slaves, allowing the commit
logic to scale independently of the number of slave replicas.

In summary, the contributions of this paper include:
• A novel and light-weight read-centric implementation

of causal consistency. By shifting enforcement to the
clients, it ensures that they never observe non-causal
states, while placing no restrictions on the data store.
• A new transactional isolation level called Per-Client

Parallel Snapshot Isolation (PC-PSI), a variant of PSI,
that contributes to Occult’s immunity to slowdown
cascades by weakening how PSI replicates transactions
committed at the same replica.
• A novel scalable protocol for providing PC-PSI that

uses causal timestamps to enforce both atomicity and
transaction ordering and whose commit latency is
independent of the number of replicas in the system.
• An implementation and evaluation of Occult, the first

causally consistent store that implements these ideas
and is immune to slowdown cascades.

2 Motivation
Causal consistency ensures that clients observe their own
updates and read from a state that includes all operations that
they have previously observed. This promise aims for a sweet
spot in the debate on the guarantees that a sharded and geo-
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Figure 1: Example of a slowdown cascade in traditional causal consistency. Delayed
replicated write(a) delays causally dependent replicated write(b) and write(c)

replicated data store should offer. On the one hand, causal
consistency maintains most of the performance edge of even-
tual consistency [60] over strong consistency, as all replicas
are available for reads under network partitions [30, 38]. On
the other hand, it minimizes the associated baggage of in-
creased programmer complexity and user-visible anomalies.
By ensuring that all clients see updates that may potentially
be causally related [34] in the same order, causal consistency
can, for example, address the race conditions that a VP of
Engineering at Twitter in a 2013 tech talk called “the biggest
problem for Twitter” [33]: when fanning out tweets from
celebrities with huge followings, some feeds may receive re-
actions to the tweets before receiving the tweets themselves.

Despite these obvious benefits, however, causal consis-
tency is largely not deployed in production systems, as ex-
isting implementations are liable to experience, at scale, one
of the downsides of strong consistency: slowdown cascades.

2.1 Slowdown Cascades
When systems scale to sufficient size, failures become
an inevitable and regular part of their operation [25, 26].
Performance anomalies, e.g., one node running with lower
throughput than the rest of the system, are typical, and can
be viewed as a kind of partial failure. Potential causes of
such failures include abnormally-high read or write traffic,
partially malfunctioning hardware, or a localized network
issue, like congestion in a top-of-rack switch. In a partitioned
system, a failure within a partition will inevitably affect the
performance of that partition. A slowdown cascade occurs
when the failure spills over to affect other partitions.

Industry has long identified the spectre of slowdown
cascades as one of the leading reasons behind its reluctance
to build strongly consistent systems [8, 17], pointing out how
the slowdown of a single shard, compounded by query ampli-
fication (e.g., a single user request in Facebook can generate
thousands of, possibly dependent, internal queries to many
services), can quickly cascade to affect the entire system.

All existing causally consistent systems [14, 28, 39, 40,
63] are susceptible to slowdown cascades. The reason, in
essence, is that, to present clients with a causally consistent
data store, these systems delay applying a write w until after
the data store reflects all the writes that causally precede w.
For example, in Eiger [40] each replicated write w carries
metadata that explicitly identifies the writes that directly
precede w in the causal dependency graph. The datacenter
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Figure 2: Average queue length of buffered replicated writes in Eiger under normal
conditions and when a single shard is delayed by 100 ms.

then delays applying w until these dependencies have been
applied locally. The visibility of a write within a shard can
then become dependent on the timeliness of other shards
in applying their own writes. As Figure 1 shows, this is a
recipe for triggering slowdown cascades: because shard A
of DC2 lags behind in applying the write propagating from
DC1, all shards in DC2 must also wait before they make
their writes visible. Shard A’s limping inevitably affects
Emily’s query, but also unnecessarily affects Frank’s, which
accesses exclusively shards B and C.

In practice, even a modest delay can trigger dangerous
slowdown cascades. Figure 2 shows how a single slow
shard affects the size of the queues kept by Eiger [40] to
buffer replicated writes. Our setup is geo-replicated across
two datacenters in Wisconsin and Utah, each running Eiger
sharded across 10 physical machines. We run a workload
consisting of 95% reads and 5% writes from 10 clients in
Wisconsin and a read-only workload from 10 clients in Utah.
We measure the average length of the queues buffering
replicated writes in Utah. Larger queues mean that newer
replicated writes take longer to be applied. If all shards
proceed at approximately the same speed, the average queue
length remains stable. However, if any shard cannot keep
up with the arrival rate of replicated writes, then the average
queue length across all shards grows indefinitely.

3 Observable Causal Consistency
To free causal consistency from slowdown cascades, we
revisit what causal consistency requires.

Like every consistency guarantee, causal consistency
defines a contract between the data store and its users that
specifies, for a given set of updates, which values the data
store is allowed to return in response to user queries. In
particular, causal consistency guarantees that each client
observes a monotonically non-decreasing set of updates
(including its own), in an order that respects potential
causality between operations.

To abide by this contract, existing causally consistent data
stores, when replicating writes, enforce internally a stronger
invariant than the contract requires: they ensure that clients
observe a monotonically non-decreasing set of updates
by evolving their data store only through monotonically
non-decreasing updates. This strengthening satisfies the

contract but, as we saw in Section 2, leaves these systems
vulnerable to slowdown cascades.

To resolve this issue, Occult moves the output commit
to the clients: letting clients themselves determine when
it is safe to read a value frees the data store to make writes
visible to clients immediately, without having to first apply
all causally preceding writes. Given the duties that many
causally consistent data stores already place on their clients
(such as maintaining the context of dependencies associated
with each of the updates they produce [39, 40]), this is only
a small step, but it is sufficient to make Occult impervious to
slowdown cascades. Furthermore, Occult no longer needs
its clients to be sticky (real-world systems like Facebook
sometimes bounce clients between datacenters because
of failures, load balancing, and/or load testing [8]). By
empowering clients to determine independently whether a
read operation is safe, it is no longer problematic to expose a
client to the state of a new replica R2 that may not yet reflect
some of the updates the client had previously observed on
a replica R1.

The general outline of a system that moves the en-
forcement of causal consistency to read operations is
straightforward. Each client c needs to maintain some
metadata to encode the most recent state of the data store that
it has observed. On reading an object o, c needs to determine
whether the version of o that the data store currently holds
is safe to read (i.e., if it reflects all the updates encoded in c’s
metadata): to this end, the data store could keep, together with
o, metadata of its own to encode the most recent state known
to the client that created that version of o. If the version
is deemed safe to read, then c needs to update its metadata
to reflect any new dependency; if it is not, then c needs to
decide how to proceed (among its options: try again; contact
a master replica guaranteed to have the latest version of o; or
trade safety for availability by accepting a stale version of o).

The key challenge, however, is identifying an encoding of
the metadata that minimizes both overhead and read latency.
Since each object in the data store must be augmented
with this metadata, the importance of reducing its size is
obvious; keeping metadata small, however, reduces its ability
to track causal dependencies accurately. Any such loss
in definition is likely to introduce spurious dependencies
between updates. Although these dependencies can never
lead to slowdown cascades in Occult, they can increase the
chances that read operations will be unnecessarily delayed.
Occult’s compressed causal timestamps leverage structural
and temporal properties to strike a sweet spot between
metadata overhead and accuracy (§5).

These causal timestamps have another, perhaps more sur-
prising consequence: they allow Occult to offer the first scal-
able implementation of causal read-write transactions (§6).
Just as the data-store need not be causal, transactions need
not take effect atomically in the datastore. They simply need
to appear atomic to clients. To achieve this, Occult makes



a transaction’s writes causally depend on each other. This
guarantees that clients that seek to read multiple writes from a
transaction will independently determine that they must either
observe all of the transactions’s writes, or none. In contrast,
transactions that seek to read a single of the transaction’s
writes will not be unnecessarily delayed until other replicas
have applied writes that they are not interested in. Once
again, this is a small step that yields big dividends: trans-
actional writes need no longer be replicated synchronously
for safety, obviating the possibility of slowdown cascades.

4 Occult: The Basic Framework
We first outline the system model and an idealized imple-
mentation of Occult’s basic functionality: clients that read
individual objects perceive the data store as causally consis-
tent. We discuss how to make the protocol practical in §5 and
sketch Occult’s more advanced features (transactions) in §6.

4.1 System Model
Our system is a sharded and replicated key-value store
where each replica is located in a separate datacenter with
a full copy of the data. The keyspace is divided into a large
number of shards, i.e., disjoint key ranges. There can be tens
or hundreds of thousands of shards, of which multiple can
be colocated on the same physical host.

We assume an asynchronous master-slave replication
model, with a publicly designated master for every shard.
This master shard accepts writes, and asynchronously, but in
order, replicates writes to the slave shards. This design is com-
mon to several large-scale real-world systems [19, 20, 49, 51]
that serve read-heavy workloads with online queries. Master-
slave replication has higher write latency than multi-master
schemes, but avoids the complexity of dealing with concur-
rent conflicting writes that can lead to lost updates [39] or
require more complex programming models [24].

Clients in our system are co-located with a replica in the
same datacenter. Each client reads from its local replica
and writes to the master shard (possibly located in a remote
replica); a client library enforces causal consistency for reads
and attaches metadata to writes. While clients normally read
from the shards in their replica, there is no requirement for
them to be “sticky” (§3).

4.2 Causal Timestamps
Occult tracks and enforces causal consistency using
shardstamps and causal timestamps. A shard’s shardstamp
counts the writes that the shard (master or slave) has
accepted. A causal timestamp is a vector of shardstamps that
identifies a global state across all shards: each entry stores
the number of known writes from the corresponding shard.
Keeping an entry per shard rather than per object trades-off
accuracy against metadata overhead: in exchange for smaller
timestamps, it potentially creates false dependencies among
all updates to objects mapped to the same shard.

Occult uses causal timestamps for (i) encoding the most
recent state of the data store observed by a client and (ii)
capturing the set of causal dependencies for write operations.
An object version o created by write w is associated with
a causal timestamp that encodes all writes in w’s causal
history (i.e., w and all writes that causally preceded it).
Upon reading o, a client updates its causal timestamp to the
element-wise maximum of its current value and that of o’s
causal timestamp: the resulting vector defines the earliest
state of the datastore that the client is now allowed to read
from to respect causal consistency.

4.3 Basic Protocol
Causal consistency in Occult results from the cooperation
between servers and client libraries enabled by causal
timestamps. Client libraries use them to validate reads,
update them after successful operations, and attach them
to writes (Figure 3). Servers store them along with each
object, and return one during reads. In addition, servers track
the state of each shard using a dedicated shardstamp; when
returned in response to a read request, it helps client libraries
determine whether completing the read could potentially
violate causal consistency (Figure 4).

Write Protocol Occult associates with any value written
v a causal timestamp summarizing all of v’s causal dependen-
cies. The client library attaches its causal timestamp to every
write and sends it to the master of the corresponding shard.
The master increments the relevant shardstamp, updates the
received causal timestamp accordingly, and stores it with
the newly written value. It then asynchronously replicates
the write to its slaves, before returning the shardstamp to the
client library. Slaves receive writes from the master in order,
along with the associated causal timestamps and shardstamps,
and update their state accordingly. On receiving the shard-
stamp, the client library in turn updates its causal timestamp
to reflect its current knowledge of the shard’s state.

Read Protocol A client reads from its local server,
which replies with the desired object’s most recent value,
that value’s dependencies (i.e., its causal timestamp), and
the current shardstamp of the appropriate shard. The
returned shardstamp s makes checking for consistency
straightforward. The client simply compares s with the entry
of its own causal timestamp for the shard in question (call
it sc) . If s is at least sc, then the shard already reflects all
the local writes that the client has already observed.

When reading from the master shard, the consistency
check is guaranteed to succeed. When reading from a slave,
however, the check may fail: replication delays from the
master shard in another datacenter may prevent a client from
observing its own writes at the slave; or the client may have
already observed a write in a different shard that depends
on an update that has not yet reached the slave; .

If the check fails (i.e., the read is stale), the client has
two choices. It can retry reading from the local replica



# c l i t s i s t h e c l i e n t ’ s c a u s a l t i m e s t a m p

def w r i t e ( key , v a l u e ) :
s h r d i d = s h a r d ( key )
m a s t e r s e r v e r = m a s t e r ( s h r d i d )
s h a r d s t a m p = m a s t e r s e r v e r . w r i t e ( key , va lue , c l i t s )
c l i t s [ s h r d i d ] = max ( c l i t s [ s h r d i d ] , s h a r d s t a m p )

def r e a d ( key ) :
s h r d i d = s h a r d ( key )
l o c a l s e r v e r = l o c a l ( s h r d i d )
va lue , deps , s h a r d s t a m p = l o c a l s e r v e r . r e a d ( key )
c l i s s = c l i t s [ s h r d i d ]
i f i s S l a v e ( l o c a l s e r v e r ) and s h a r d s t a m p < c l i s s :

return f i n i s h S t a l e R e a d ( key )
e l s e : c l i t s = e n t r y w i s e m a x ( c l i t s , deps )

return v a l u e

Figure 3: Client Library Pseudocode

1 def w r i t e ( key , va lue , deps ) : # ( on m a s t e r s )
2 s h r d i d = s h a r d ( key )
3 s h a r d s t a m p s [ s h r d i d ] += 1
4 s h a r d s t a m p = s h a r d s t a m p s [ s h r d i d ]
5 deps [ s h a r d i d ] = s h a r d s t a m p
6 s t o r e ( key , va lue , deps )
7 f or s in mySlaves ( s h a r d i d ) :
8 async ( s . r e p l i c a t e ( key , va lue , deps , s h a r d s t a m p ) )
9 return s h a r d s t a m p

10
11 def r e p l i c a t e ( key , va lue , deps , s h a r d s t a m p ) : # ( on s l a v e s )
12 s h a r d s t a m p s [ s h a r d ( key ) ] = s h a r d s t a m p
13 s t o r e V a l u e ( key , va lue , deps )
14
15 def r e a d ( key ) :
16 s h a r d s t a m p = s h a r d s t a m p s [ s h a r d ( key ) ]
17 return ( g e t V a l u e ( key ) , ge tDeps ( key ) , s h a r d s t a m p )

Figure 4: Server Pseudocode

until the shardstamp advances enough to clear the check.
Alternatively, it can send the read to the master shard, which
always reflects the most recent state of the shard, at the cost
of increased latency and additional load on the master. Occult
adopts a hybrid strategy: it retries locally for a maximum
of r times (with an exponentially increasing delay between
retries) and only then reads from the master replica. This ap-
proach resolves most stales quickly, while preventing clients
from overloading their local slaves with excessive retries.

Finally, the client updates its causal timestamp to reflect
the dependencies included in the causal timestamp returned
by the server, ensuring that future successful reads will never
be inconsistent with the last read value.

5 Causal Timestamp Compression
The above protocol relies on causal timestamps with an
entry per shard, a prohibitive proposition when the number
of shards N can be in the hundreds of thousands. Occult
compresses their size to n entries (with n � N) without
introducing many spurious dependencies.

A first attempt: structural compression Our most
straightforward attempt—structural compression—maps all
shards whose ids are congruent modulo n to the same entry,
reducing a causal timestamps’ size from N to n at the cost of
generating spurious dependencies [58]. The impact of these
dependencies on performance (in the form of delayed reads)
worsens when shards have widely different shardstamps.
Suppose shards i and j map to the same entry sc and their
shardstamps read, respectively, 100 and 1000. A client that
writes to j will fail the consistency check when reading from
a slave of i until i has received at least 1000 writes. In fact,
if i never receives 1000 writes, the client will always failover
to reading from i’s master shard.

These concerns could be mitigated by requiring master
shards to periodically advance their shardstamp and then
replicate this advancement to their slaves, independent of the
write rate from clients. However, fine-tuning the frequency
and magnitude of this synchronization is difficult without

explicit coordination between i and j. A better solution is
instead to rely on loosely synchronized shardstamps based
on real, rather than logical, clocks [6]. This guarantees
that shardstamps differ by no more than the relative offset
between their clocks, independent of the write rate on
different master shards.

Finally, to reduce the impact of clock skew on creating
false dependencies, the master for shard i can use the causal
timestamp ts received from a client on a write operation to
more tightly synchronize its shardstamp with those of other
shards that the client has recently accessed. Rather than
blindly using the current value cl of the physical clock of the
server on which it is hosted, i can simply set its shardstamp
to be larger than the maximum among (i) its current
shardstamp; (ii) cl; and (iii) the highest of the values in ts.

Temporal compression Though using real clocks reduces
the chances of generating spurious dependencies, it does not
fully address the fundamental limitation of using modulo
arithmetic to compress causal timestamps: it is still quite
likely that shards with relatively far-apart shardstamps will
be mapped to the same entry in the causal timestamp vector.

The next step in our refinement is guided by a simple intu-
ition: recent shardstamps are more likely to generate spurious
dependencies than older ones. Thus, rather than mapping a
roughly equal number of shards to each of its n entries, tempo-
ral compression focuses a disproportionate fraction of its abil-
ity to accurately resolve dependencies on the shards with the
most recent shardstamps. Adapting to our purposes a scheme
first devised by Adya and Liskov [6], clients assign an in-
dividual entry in their causal timestamp to the n−1 shards
with the most recent shardstamps they have observed. Each
entry also explicitly stores the corresponding shard id. All
other shards are mapped to the vector’s “catch-all” last entry.
One may reasonably fear that conflating all but n−1 shards
in the same entry will lead, when a client tries to read from
one of the conflated shards, to a large number of failed con-
sistency checks—but it need not be so. For a large-enough
n, the catch-all entry will naturally reflect updates that were
accepted a while ago. Thus, when a client tries to read from a



conflated shard i, it is quite likely that the shardstamp of i will
have already exceeded the value stored in the catch-all entry.

To allow causal timestamps to maintain the invariant of
explicitly tracking the shards with the n−1 highest observed
shardstamps, we must slightly revise the client’s read and
write protocols in Figure 3. The first change involves write
operations on a shard currently mapped to the catch-all entry.
When the client receives back that shard’s current shardstamp,
it compares it to those of the n−1 shards that its causal times-
tamp is currently tracking explicitly. The shard with the
smallest shardstamp joins the ranks of the conflated and its
shardstamp, if it exceeds the current value, becomes the new
value of the catch-all entry for the conflated shards. The
second change occurs on reads and concerns how the client’s
causal timestamp is merged with the one returned with the
object being read. The shardstamps in either of the two causal
timestamps are sorted, and only the shards corresponding to
the highest n−1 shardstamps are explicitly tracked going
forward; the others are conflated, and the new catch-all entry
updated to reflect the new dependencies it now includes.

Isolating datacenters With either structural or temporal
compression, the effectiveness of loosely synchronized
timestamps in curbing spurious dependencies can be signif-
icantly affected by another factor: the interplay between the
time it takes for updates to replicate across datacenters and
the relative skew between the datacenters’ clocks. Consider
two datacenters, A and B, and assume for simplicity a causal
timestamp consisting of a single shardstamp. Clocks within
each datacenter are closely synchronized and we can ignore
their skew. Say, however, that A’s clocks run s ms ahead of
those in B, that the average replication delay between datacen-
ters is r ms, and that the average interval between consecutive
writes at masters is i ms. Assume now that a client c in A
writes to a local master node and updates its causal timestamp
with the shardstamp it receives. If c then immediately tries
to read from a local slave node, c’s shardstamp will be ahead
of the slave’s by about (s+r+i) ms: until the latter catches
up, no value read from it will be deemed safe. For clients in
B, meanwhile, the window of inconsistency under the same
circumstances would be much shorter: just (−s+r+i) ms,
potentially leading to substantially fewer stale reads.

This effect can be significant (§8.2.1). The master write
interval i, even with a read-heavy Zipfian workload, is less
than 1 ms in our experiments. However, the replication
delay r can range from a few tens to over 100 ms and cross
datacenter clock skew s can be tens of milliseconds even
when using NTP [3] (clock skew between nodes in the same
datacenter is often within 0.5-2ms). Thus, if masters are
distributed across datacenters, the percentage of stale reads
experienced by clients of different datacenters can differ by
orders of magnitude.

We solve this problem using distinct causal timestamps
for each datacenter. On writes, clients use the returned
shardstamp to update the causal timestamp of the datacenter

hosting the relevant master shard. On reads, clients update
each of their datacenter-specific causal timestamps using the
corresponding causal timestamps returned by the server.

Two factors mitigate the additional overhead caused by
datacenter-specific causal timestamps. First, the number
of causal timestamps does not grow with the number of
datacenters, but rather with the number of datacenters
with master shards, which can be significantly lower [19].
Second, because clocks within each datacenter are closely
synchronized, these causal timestamps need fewer entries
to achieve a given target in the percentage of stale reads.

6 Transactions
Many applications can benefit from the ability to read
and write multiple objects atomically. To this end, Occult
builds on the system described for single-key operations
to provide general-purpose read-write transactions. To the
best of our knowledge, Occult is the first causal system to
support general-purpose transactions while being scalable
and resilient to slowdown cascades.

Transactions in Occult run under a new isolation property
called Per-Client Snapshot Isolation (PC-PSI), a variant of
Parallel Snapshot Isolation (PSI) [55]. PSI is an attractive
starting point because it aims to strike a careful balance
between the competing concerns of strong guarantees (im-
portant for developing applications) and scalable low-latency
operations. On the one hand, PSI requires that transactions
read from a causally consistent snapshot and precludes
concurrent conflicting writes. On the other hand, PSI takes
a substantial step towards improving scalability by letting
transactions first commit at their local datacenter and sub-
sequently replicate their effects asynchronously to other sites
(while preserving causal ordering). In doing so, PSI sidesteps
the requirement of a total order on all transactions, which is
the primary scalability bottleneck of Snapshot Isolation [15]
(a popular guarantee in non-distributed systems).

PSI’s scalability, however, is ultimately undermined by the
constraints its implementation imposes on the order in which
transactions are to be replicated, leaving it unnecessarily
vulnerable to slowdown cascades. Specifically, PSI totally
orders all transactions that commit at a replica, and it requires
this order to be respected when the transactions are replicated
at other sites [55]. For instance, suppose the transactions
in Figure 5 are executed by four different clients on the
same replica. Under PSI, they would be totally ordered as
T1→T2→T3→T4. If, when these transactions are applied
at a different replica, any of the shards in charge of applying
T2 is slow, the replication of T3 and T4 will be delayed, even
though neither has a read/write dependency on T2.

PC-PSI removes these unnecessary constraints. Rather
than totally ordering all transactions that were coincidentally
located on the same replica, PC-PSI only requires transac-
tions to be replicated in a way that respects both read/write



T1 : s(1) r(x) w(y=10) c(2)           T2 : s(3) r(y=10) w(z) c(4)
T3 : s(5) r(a) w(b=50) c(6)           T4 : s(7) r(b=50) w(c) c(8)

Figure 5: PSI requires transactions to be replicated in commit order. s(i) and c( j)
mean respectively start (commit) at timestamp i ( j).

dependencies and the order of transactions that belong to the
same client session (even when the client is not sticky). This
is sufficient to ensure semantically relevant dependencies,
i.e., if Alice defriends Bob in one transaction and then later
posts her Spring-break photos in another transaction, then
Bob will not be able to view her photos, regardless of which
replica he reads from. At the same time, it allows Occult
to support transactions while minimizing its vulnerability
to slowdown cascades.

Like PSI, PC-PSI precludes concurrent conflicting writes.
When implementing read-write transactions, this guarantee
is crucial to removing the danger of anomalies like lost
updates [15]. When writes are accepted at all replicas, as in
most existing causally consistent systems [10, 27, 28, 39, 40]
this guarantee comes at the cost of expensive synchroniza-
tion [35], crippling scalability and driving up latency. Not
so in Occult, whose master-slave architecture makes it
straightforward and inexpensive to enforce, laying the basis
for Occult’s low-latency read/write transactions.

6.1 PC-PSI Specification
To specify PC-PSI, we start from PSI. In particular, we lever-
age recent work [23] that proves PSI is equivalent to lazy
consistency [6]. This isolation level is known [5] to be the
weakest to simultaneously provide two guarantees at the core
of PC-PSI: (i) transactions observe a consistent snapshot of
the database and (ii) write-write conflicts are not allowed. We
thus build on the theoretical framework behind the specifica-
tion of lazy consistency [5], adding to it the requirement that
transactions in the same client session must be totally ordered.

Concretely, we associate with the execution H of a set of
transactions a directed serialization graph DSG(H), whose
nodes consist of committed transactions and whose edges
mark the conflicts (rw for read-write, ww for write-write, wr
for write-read) that occur between them. To these, we add
a fourth set of edges: Ti

sd−→Tj if some client c first commits
Ti and then Tj (sd is short for session dependency).

The specification of PC-PSI then constrains the set of
valid serialization graphs. In particular, a valid DSG(H)
must not exhibit any of the following anomalies:
Aborted Reads A committed transaction T2 reads some
object modified by an aborted transaction T1.
Intermediate Reads A committed transaction T2 reads a
version of an object x written by another transaction T1 that
was not T1’s final modification of x.
Circular Information Flow DSG(H) contains a cycle
consisting entirely of wr, ww and sd edges.
Missed Effects DSG(H) contains a cycle that includes
exactly one rw edge.

Intuitively, preventing Circular Information Flow ensures

that if T1 and T2 commit and T1 depends on T2, then T2
cannot depend on T1. In turn, disallowing cycles with a single
rw edge ensures that no committed transaction ever misses
writes of another committed transaction on which it otherwise
depends, i.e., committed transactions read from a consistent
snapshot and write-write conflicts are prevented (§6.3).

6.2 Executing Read/Write Transactions
Occult supports read/write transactions via a three-phase
optimistic concurrency protocol that, in line with the sys-
tem’s ethos, makes clients responsible for running the logic
needed to enforce PC-PSI (see Appendix A for the protocol’s
pseudocode). First, in the read phase, a client c executing
transaction T obtains from the appropriate shards the objects
that T reads, and locally buffers T ’s writes. Then, in the
validation phase, c ensures that all read objects belong to a
consistent snapshot of the system that reflects the effects of
all transactions that causally precede T . Finally, in the com-
mit phase, c writes back atomically all objects updated by T .

Read phase For each object o read by T , c contacts the
local server for the corresponding shard so, making sure,
if the server is a slave, not to be reading a stale version
(§4.3) of o—i.e., a version of o that is older than what c’s
causal timestamp already reflects about the state of so. If the
read is successful, c adds o, its causal timestamp, and so’s
shardstamp to T ’s read set. Otherwise, after a tunable number
of further attempts, c proceeds to read o from its master
server, whose version is never stale. Meanwhile, all writes
are buffered in T ’s write set. They are atomically committed
to servers in the final phase. Thus only committed objects
are read in this phase and cascading aborts are not possible.

Validation phase Validation involves three steps. In the
first, c verifies that the objects in its read set belong to a
consistent snapshot Σrs. It does so by checking that all pairs
oi and o j of such objects are pairwise consistent [12], i.e.,
that the saved shardstamp of the shard soi from which oi was
read is at least as up to date as the entry for soi in the causal
timestamp of o j (and vice versa). If the check fails, T aborts.

In the second step, c attempts to lock every object o
updated by a write w in T ’s write set by contacting the
corresponding shard so on the master server. If c succeeds,
Occult’s master-slave design ensures that c has exclusive
write access to the latest version of o (reads are always
allowed); if not, c restarts this step of the validation phase
until it succeeds (or possibly aborts T after n failed attempts).
In response to a successful lock request, the master server
returns two data items: 1) o’s causal timestamp, and 2) the
new shardstamp that will be assigned to w. c stores this
information in T ’s overwrite set. Note that, since they have
been obtained from the corresponding master servers, the
causal timestamps of the objects in the overwrite set are
guaranteed to be pairwise consistent, and therefore to define
a consistent snapshot Σow: Σow captures the updates of all
transactions that T would depend on after committing.



To ensure that T is not missing any of these updates, in
the final step of validation c checks that Σrs is at least as
recent as Σow. If the check fails, T aborts.

Commit phase c computes T ’s commit timestamp tsT by
first initializing it to the causal timestamp of the snapshot Σrs
from which T read, and by then updating it to account for
the shardstamps, saved in T ’s overwrite set, assigned to T ’s
writes. The value of tsT [i] is thus set to the largest between
(i) the highest value of the i-th entry of any of the causal
timestamps in T ’s read set, and (ii) the highest shardstamp
assigned to any of the writes in T ’s write set that update an
object stored on a shard mapped to entry i. c then writes back
the objects in T ’s write set to the appropriate master server,
with tsT as their causal timestamp. Finally, to ensure that any
future transaction executed by this client will be (causally)
ordered after T , c sets its own causal timestamp to tsT .

The commit phase enforces a property that is crucial for
Occult’s scalability: it guarantees that transactions are atomic
even though Occult replicates their writes asynchronously.
Because the commit timestamp tsT both reflects all writes
that T performs and is used as the causal timestamp of
every object that T updates, tsT makes all of these updates,
in effect, causally dependent on one another. As a result,
any transaction whose read set includes any object o in T ’s
write set will necessarily either become dependent on all the
updates that T performed, or none of them.

6.3 Correctness
To implement PC-PSI, the protocol must prevent Aborted
Reads, Intermediate Reads, Circular Information Flow, and
Missed Effects. The optimistic nature of the protocol trivially
yields the first two conditions, as writes are buffered locally
and only written back when transactions commit. Occult
also precludes Circular Information Flow. Since clients
acquire write locks on all objects before modifying them,
transactions that modify the same objects cannot commit
concurrently and interleave their writes (no ww cycles).
Cycles consisting only of ww, wr, and sd edges are instead
prevented by the structure of OCC, whose read phase strictly
precedes all writes: if a sequence of ww/wr/sd edges leads
from T1 to T2, then T1 must have committed before T2, and
could not have observed the effects of T2 or created a write
with a lower causal timestamp than T2’s.

Finally, Occult’s validation phase prevents Missed Effects.
By contradiction, suppose that all transactions involved
in a DSG cycle with a single anti-dependency (rw) edge
have passed the validation phase. Let T be the transaction
from which that edge originates, ending in T∗. Let T−1
immediately precede T in the cycle. Let o be the object
written by T∗ whose update T missed. Either T−1 and T∗ are
one, or T−1 wr/ww/sd depends on T∗: either way, Occult’s
protocol ensures that the commit timestamp of T−1 is at
least as large as that of T∗. By assumption, T missed some
update to o: hence, the shardstamp for o’s shard so in T ’s

readset must be smaller that the corresponding entry in the
commit timestamps of T∗ and T−1. There are three cases:
(i) T−1

sd−→T . The client that issued both T−1 and T must have
decreased its causal timestamp after committing T−1, but the
protocol ensures causal timestamps increase monotonically.
(ii) T−1

ww−−→T . Since T overwrites an object updated by T−1,
T ’s overwrite set must include T−1’s commit timestamp.
But then T would fail in validating its read set against its
overwrite set, since the latter has a larger entry corresponding
to so than the former.
(iii) T−1

wr−→T . Since T reads an object updated by T−1, its
read set contains T−1’s commit timestamp. But then T would
fail in validating its read set, since the object updated by T−1
and the version of o read by T would be pairwise inconsistent.

Each case leads to a contradiction: hence no such cycle
can occur and no effects are missed.

7 Fault Tolerance
Server failures Slave failures in Occult only increase read
latency as slaves never accept writes and read requests to
failed slaves eventually time-out and redirect to the master.
Master failures are more critical. First, as in all single-master
systems [56], no writes can be processed on a shard with
a failed master. Second, in common with all asynchronously
replicated systems [11, 14, 39, 40, 56], Occult exhibits a
vulnerability window during which writes executed at the
master may not yet have been replicated to slaves and may
be lost if the master crashes. These missing writes may
cause subsequent client requests to fail: if a client c’s write
to object o is lost, c cannot read o without violating causality.
This scenario is common to all causal systems for which
clients do not share fate with the servers to which they
write. Occult’s client-centric approach to causal consistency,
however, creates another dangerous scenario: as datacenters
are not themselves causally consistent, writes can be
replicated out of order. A write y that is dependent on a write
x can be replicated to another datacenter despite the loss of x,
preventing any subsequent client from reading both x and y.

Master failures can be handled using well-known
techniques: individual machine failures within a datacenter
can be handled by replicating the master locally using
chain-replication [59] or Paxos [36], before replicating
asynchronously to other replicas.

Client failures A client failure for single-key operations
impacts only the failed client as neither reads nor writes cre-
ate temporary server state. In transactional mode, however,
clients modify server state during the commit phase: they ac-
quire locks on objects in the transaction’s write-set and write
back new values. A client failure during the transaction com-
mit process may thus cause locks to be held indefinitely by
failed clients, preventing other transactions from committing.
Such failures can be handled by augmenting Occult with
Bernstein’s cooperative termination protocol [16] for coor-



dinator recovery [32, 64]. Upon detecting a suspected client
failure, individual shards can attempt to elect themselves as
backup coordinator (using an instance of Paxos to ensure that
a single coordinator is elected). The backup coordinator can
then appropriately terminate the transaction (by committing
it if a replica shard successfully received an unlock request
with the appropriate transaction timestamp using the buffered
writes at every replica, or aborting it otherwise).

8 Evaluation
Our evaluation answers three questions:
1. How well does Occult perform in terms of throughput,

latency, and transaction abort rate?
2. What is its overhead when compared to an eventually-

consistent system?
3. What is the effect of server slowdowns on Occult?

We have implemented Occult by modifying Redis Clus-
ter [4], the distributed implementation of the widely-used
Redis key-value store. Redis Cluster divides the entire
key-space into N logical shards (default N = 16K), which
are then evenly distributed across the available physical
servers. Our causal timestamps track shardstamps at the
granularity of logical shards to avoid dependencies on the
physical location of the data.

For a fair comparison with Occult, we modify our Redis
Cluster baseline to allow reads from slaves (Redis Cluster
by default uses primary-backup [53] replication for fault
tolerance). We further modify the Redis client [2] to, like
Occult, allow for client locality: the client prioritizes reading
from shards in its local datacenter and executes write
operations at the master shard.

8.1 Experimental Setup
Unless otherwise stated, we run our experiments on
CloudLab [1, 52] with 20 server and 20 client machines
evenly divided across two datacenters in Wisconsin (WI)
and South Carolina (SC); the cross-datacenter ping latency
is 39ms. Each machine has dual Intel E5-2660 10-core
CPUs and dual-port Intel 10Gbe NICs, with respectively
160GB memory (WI) and 256GB (SC). Our experiments
use public IP addresses, routable between CloudLab sites,
which are limited to 1Gbps. Each server machine runs four
instances of the server process, with each server process
being responsible for N/40 logical shards. Half of all shards
have a master in WI and a slave in SC; the other half have
the opposite configuration.

Client machines run the Yahoo! Cloud Serving Bench-
mark (YCSB) [21]. We run experiments with both of
YCSB’s Zipfian and Uniform workloads but, for brevity,
show results only for the Zipfian distribution, more repre-
sentative of real workloads. Prior to the experiments, we
load the cluster with 10 million records following YCSB’s
default, i.e., keys varying in size up to 23B and 1KB values.
We report results at peak goodput, running for at least 100

seconds and then excluding 10-second ramp-up and ramp-
down periods. Goodput measures successful operations
per second, e.g., a read that needs to be retried four times
will only be counted once towards goodput. The bottleneck
resource for all experiments is out bound network bandwidth
on the hottest master. The CPU on the hottest master is
nearly saturated (> 90% utilization) and would almost
immediately bottleneck each system at a similar throughput
if we were able to increase the network bandwidth.

8.2 Performance and Overhead
8.2.1 Single Key Operations
We first quantify the overhead of enforcing causal consistency
in Occult. We show results for a read-heavy (95% reads, 5%
writes) workload, which is more interesting and challenging
for our system. Write-heavy workloads performed better in
general: we include them in Appendix B.1 for completeness.

We compare system throughput as a function of causal
timestamp size, for each of the previously described schemes
(structural, temporal, and temporal with datacenter isolation),
with Redis cluster as the baseline. Temporal compression
requires a minimum of two entries per causal timestamp;
adding datacenter isolation (DC-Isolate), doubles this
number, so that the smallest number of shardstamps used
by DC-Isolate is four.

In the best case (DC-Isolate scheme with four-entry
timestamps), Occult’s performance is competitive with
Redis, despite providing much stronger guarantees: its
goodput is only 8.7% lower than Redis (Figure 6a) and its
mean and tail latency are, respectively, only 50 μs and 400
μs higher than in Redis (Figure 6b). Other schemes perform
either systematically worse (Structural), or require twice the
number of shardstamps to achieve comparable performance
(Temporal). The low performance of the structural and
temporal schemes are due to their high stale read rate
(Figures 6c and 6d). In contrast, DC-Isolate has very a low
percentage of stale reads even with small causal timestamps.
Its slight drop in goodput is primarily due to Occult’s other
source of overhead: the CPU, network, and storage cost
of attaching and storing timestamps to requests and objects.
These results highlight the tension between overhead and
precision: larger causal timestamps reduce the amount of
stale reads (as evidenced by the improved performance of
the temporal scheme when vector size grows), but worsen
overhead (the goodput of the DC-Isolate scheme actually
drops slightly as the number of shardstamps increases).

Achieving a low stale read rate with few shardstamps, as
DC-Isolate does, is thus crucial to achieving good perfor-
mance. Key to its success is its ability to track timestamps
from different datacenters independently. Consider Figures
6c and 6d: in these experiments we simply count the
percentage of stale reads but do not retry locally or read from
the remote master. Observe that the temporal and structural
schemes suffer from a significantly higher stale read rate in
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Figure 6: Measurement and analysis of Occult’s overhead for single key operations. Spatial, Temporal or DC-Isolate mean that we run Occult using those compression methods
while Eventual indicates our baseline, i.e., Redis Cluster. WI means Wisconsin datacenter and SC means South Carolina datacenter.

the SC datacenter. To understand why, we instrumented the
code to track metadata related to the last operation to modify
a client’s causal timestamp before it does a stale read. We
discovered that almost 96% of stale reads occur when the
client writes or reads from a local master node immediately
before reading from a local slave node (Figure 6e). If the
local master node runs ahead (for instance, the SC datacenter
has a positive offset of about 22 ms, as measured via
ntpdate), the temporal scheme will declare all reads to the
local slave as stale. In contrast, by tracking dependencies
on a per-datacenter basis, DC-Isolate side-steps this issue,
producing a low stale rate across datacenters.
8.2.2 Transactions
To evaluate transactions, we modify the workload generator
of the YCSB benchmark to issue start and commit
operations in addition to reads and writes. Operations are
dispatched serially, i.e., operation i must complete before
operation i + 1 is issued. The resulting long duration
of transactions are worst case scenario for Occult. The
generator is parameterized with the required number of
operations per transaction (Tsize). We use the DC-Isolate
scheme for Occult in all these experiments.

We show results for increasing values of Tsize. For smaller
values, most transactions in the workload are read-only, and
as Tsize increases most transactions become read-write . As
Figure 7a shows, the overall goodput remains within 2/3 of
the goodput of non transactional Occult (varying from 60%
to 70%), even as Tsize increases and aborts become more
likely. Figures 7b and 7c analyze the causes of these aborts.
Recall from §6.2 that aborts can occur because of either (i)
validation failures of the read/overwrite sets or (ii) failure
to acquire locks on keys being written. Figure 7b fixes
Tsize=20 and classifies aborts into these three categories. We

find that aborts are dominated by the failure to acquire locks.
Furthermore, due to the highly skewed nature of the YCSB
zipfian workload, >80% of these lock-fail aborts are due to
contention on the 50 hottest keys. This high contention also
explains the limited benefit of retrying to acquire locks. Fig-
ure 7b also shows that increasing the number of shardstamps
almost completely eliminates aborts due to failed validations
of the read set and roughly halves aborts due to failed
validations of the overwrite set. Finally, in Figure 7c retrying
lock acquisition has slightly better impact at larger values of
Tsize when most transactions are read-write. For comparison,
we show the abort rate on a uniform distribution.
8.2.3 Resource Overhead
To quantify the resource overhead of Occult over Redis
Cluster, we measure the CPU usage (using getrusage())
and the total bytes sent and received over 120 secs for both
systems at the same throughput (1.27Mop/s) and report the
average of five runs, averaged over the 80 server processes.

Overall CPU usage increases by 7% with a slightly higher
increase on slaves (8%) than masters (6%). This difference
is due to stale read retries in Occult. Output bandwidth
increases by 8.8%, while input bandwidth increases by 49%,
as attaching metadata to read requests with a key size of
at most 23B has a much larger impact than attaching it to
replies carrying 1KB values.

Finally, we measure storage overhead by loading both
Redis and Occult with 10 million records and measuring the
increase in memory usage of each server process. Storing
four shardstamps with each key results in an increase,
on average, of 3% for Occult over Redis. Storing 10
shardstamps instead results in an increase of 4.9%.
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Figure 7: Transactions in Occult

8.3 Impact of slow nodes
Occult is by design immune to the slowdown of a server
cascading to affect the entire system. Nonetheless, the slow-
down of a server does introduce additional overhead relative
to an eventually-consistent system. In particular, slowing
down slaves increases the stale rate, which in turn increases
retries on that slave and remote reads from its corresponding
master. We measure these effects by artificially slowing
down the replication of writes at a number of slave nodes,
symmetrically increasing their number from one to three
per datacenter—two to six overall. This causes a slowdown
of around 2.5% to 7.5% of all nodes. We notice that, at
peak throughput, the node containing the hottest key serves
around 3×more operations than the nodes serving keys in
the tail of the distribution. We evaluate slowdowns of the tail
nodes separately from the hot nodes, which we slowdown
in decreasing order of load, starting from the hottest node.

We first delay replicated writes on tail nodes by 100 ms,
which, as Figure 8a shows, does not affect throughput: even
at peak throughput for the cluster, only the hottest nodes are
actually CPU or network saturated. As such, tail nodes (mas-
ter or slave) still have spare capacity. When clients failover to
the master (after n local retries), this spare capacity absorbs
the additional load. In contrast, read latency is affected (Fig
8b). Though median, 75th, and 90th percentile latencies
remain unchanged because reads to non-slow nodes are unaf-
fected by the presence of slow servers, tail latencies increase
significantly as the likelihood of hitting a lagging server and
reading a stale value increases. Thus, increasing slow nodes
from two to six first makes the 99th percentile and then the
95th percentile latency jump to around 48ms. This includes
n=4 local retries by the client (after delays of 0, 1, 2, and 4
ms) and finally contacting the master in a remote datacenter
(39 ms away). Having a large delay of 100 ms and n = 4
means that our experiment actually evaluates an arbitrarily
large slowdown, since almost all client reads to slow slaves
eventually fail over to the master. We confirm this by setting
the delay to infinite: the results for both throughput (Figure
8a) and latency (not shown) are identical to the 100 ms case.

Slowing down the hot nodes impacts both throughput
and latency. The YCSB workload we use completely
saturates the hottest master and its slave. Unlike in the

previous experiments, the hot master does not have any
spare capacity to handle failovers, and throughput suffers
(Figure 8a). Slowing more than two slave nodes does not
decrease throughput further becuase their respective masters
have spare capacity. Figure 8c shows that, as expected given
the skewed workload, slowing down an increasing number
of hot nodes increases the 99th and 95th percentile latencies
faster than slowing down tail nodes (Figure 8b). The median
and 75th percentile latencies remain unchanged as before.

9 Related Work
Scalable Causal Consistency COPS [39] tracks causal
consistency with explicit dependencies and then enforces
it pessimistically by checking these dependencies before
applying remote writes at a replica. COPS strives to limit
the loss of throughput caused by the metadata and messages
needed to check dependencies by exploiting transitivity.
ChainReaction [10], Orbe [27], and GentleRain [28] show
how to reduce these dependencies further by using Bloom
filters, dependency matrices, and a single timestamp, respec-
tively. These techniques reduce metadata by making it more
coarse-grained, which actually exacerbates slowdown cas-
cades. Eiger [40] builds on COPS with a more general data
model, write-only transactions, and an improved read-only
transaction algorithm. BoltOn [14] shows how to use shim
layers to add pessimistic causal consistency to an existing
eventually consistent storage system. COPS-SNOW [41]
provides a new latency-optimal read-only transaction
algorithm. Occult improves on this line of research by
identifying the problem of slowdown cascades and showing
how an optimistic approach to causal consistency can
overcome them. In addition, all of these systems provide
weaker forms of transactions than Occult: Eiger provides
read-only and write-only transactions, while all other systems
provide only read-only transactions or no transactions at all.

Pileus [56] and Tuba [11] (which adds reconfigurability
to Pileus) provide a range of consistency models that clients
can dynamically choose between by specifying an SLA that
assigns utilities to different combinations of consistency and
latency. Pileus has several design choices that are similar to
Occult: it uses a single master, applies writes at replicas with-
out delay (i.e., is optimistic), uses a timestamp to determine
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Figure 8: Effect on overall goodput and read latency due to slow nodes in Occult

if a read value meets a given consistency level (including
causal consistency), and can issue reads across different
datacenters to meet a given consistency level. However,
Pileus is not scalable as it uses a single logical timestamp
as the client’s state (which we show in our evaluation has
a very high false positive stale rate) and evaluates with only
a single node per replica. We consider an interesting avenue
of future work to see if we can combine the focus of Pileus
(consistency choice and SLAs) with Occult.

Cure [9] is a causally consistent storage system that
provides read-write transactions. Cure is pessimistic and uses
a single timestamp per replica to track and enforce causal
dependencies. Cure provides a restricted form of read-write
transactions that requires all operations to be on convergent
and commutative replicated data types (CRDTs) [54]. Using
CRDTs allows Cure to avoid coordination for writes and
instead eventually merges conflicting writes, including those
issued as part of read-write transactions. Occult, in contrast,
is an optimistic system that provides read-write transactions
for the normal data types that programmers are familiar
with. Saturn [18], like Occult, tries to strike a balance
between metadata overhead and false sharing by relying
on “small labels” (like Cure) while selecting serializations
at datacenters that minimize spurious dependencies.

Read/Write Transactions Many recent research systems
with read/write transactions are limited to a single datacenter
(e.g., [37, 46, 61, 62]) whereas most production systems are
geo-replicated. Some geo-replicated research systems cannot
scale to large clusters because they have a single point of
serialization per datacenter [24, 55] while others are limited
to transactions with known read and write sets [47, 57, 65].

Scalable geo-replicated transactional systems include
Spanner [22], MDCC [32], and TAPIR [64]. Spanner is a
production system at Google that uses synchronized clocks
to reduce coordination for strictly serializable transactions.
MDCC uses Generalized Paxos [36] to reduce wide-area
commit latency. TAPIR avoids coordination in both
replication and concurrency control to be able to sometimes
commit a transaction in a single wide-area round trip. All of
these systems provide strict serializability, a much stronger
consistency level than what Occult provides. As a result,
they require heavier-weight mechanisms for deciding to

abort or commit transactions and will abort more often.
Rethinking the Output Commit Step We were inspired

to rethink the output commit step for causal consistency
by a number of previous systems: Rethink the Sync [48],
which did it for local file I/O; Blizzard [45], which did it for
cloud storage; Zyzzyva [31], which did it for Byzantine fault
tolerance; and Speculative Paxos [50], which did it for Paxos.

10 Conclusion
This paper identifies slowdown cascades as a fundamental
limitation of enforcing causal consistency as a global prop-
erty of the datastore. Occult instead moves this responsibility
to the client: the data store makes its updates available
as soon as it receives them. Clients then enforce causal
consistency on reads only for updates that they are actually
interested in observing, using compressed timestamps to
track causality. Occult follows the same philosophy for its
scalable general-purpose transaction protocol: by ensuring
that transactions read from a consistent snapshot and using
timestamps to guarantee atomicity, it guarantees the strong
properties of PSI while avoiding its scalability bottleneck.
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A Pseudocode for Transactions

Listing 1: Interface of a Causal Timestamp

1 c l a s s Causa lTimestamp :
2 def i n i t (N ) :
3 V = [ 0 ] ∗ N
4
5 # Get shards tamp f o r s h a r d i d
6 def getSS ( s h a r d i d ) :
7 return V[ s h a r d i d ]
8
9 # Re turn t h e shards tamp w i t h maximum v a l u e

10 def maxSS ( ) :
11 return max (V)
12
13 # Update t h e shards tamp f o r s h a r d i d t o new ss
14 def updateSS ( s h a r d i d , new ss ) :
15 V[ s h a r d i d ] = max (V[ s h a r d i d ] , new ss )
16
17 # Merge a n o t h e r CausalTimes tamp i n t o t h i s o b j e c t
18 def mergeCTS ( o t h e r c t s ) :
19 for i in range ( 0 , l en (V ) ) :
20 V[ i ] = max (V[ i ] , o t h e r c t s [ i ] )

Listing 2: Server-side pseudocode

1 # a l l o c a t e new shards tamp u s i n g l o o s e l y s y n c h r o n i z e d
2 # c l o c k s as d e s c r i b e d i n S e c t i o n 5
3 def newShardstamp ( m a x c l i s s , s h a r d i d ) :
4 new ss = max ( c u r r e n t S y s T i m e ( ) , m a x c l i s s )
5 i f new ss < s h a r d s t a m p s [ s h a r d i d ] :
6 return s h a r d s t a m p s [ s h a r d i d ] + 1
7 e l s e :
8 return new ss + 1
9

10 def r e a d ( key ) :
11 s h a r d s t a m p = s h a r d s t a m p s [ s h a r d ( key ) ]
12 return ( g e t V a l u e ( key ) , ge tDeps ( key ) , s h a r d s t a m p )
13
14 def p r e p a r e ( t i d , key , va lue , m a x c l i s s ) :
15 i f not i s l o c k e d ( s h a r d ( key ) ) :
16 l o c k w r i t e s ( s h a r d ( key ) )
17 i f t i d not in prepKV : # prepared t x n s key v a l s
18 prepKV [ t i d ] = l i s t ( )
19 prepKV [ t i d ] . append ( ( key , v a l u e ) )
20 s h a r d s t a m p = s h a r d s t a m p s [ s h a r d ( key ) ]
21 new ss = newShardstamp ( m a x c l i s s , s h a r d ( key ) )
22 return ( new ss , ge tDeps ( key ) )
23 e l s e :
24 throw LOCKED
25
26 def c o m m i t s e r v e r ( t i d , deps ) :
27 f or key , v a l u e in prepKV [ t i d ] :
28 s h a r d s t a m p s [ s h a r d ( key ) ] = deps . maxSS ( )
29 s t o r e ( key , va lue , deps )
30 s h a r d s t a m p = s h a r d s t a m p s [ s h a r d ( key ) ] )
31 u n l o c k w r i t e s ( s h a r d ( key ) )
32 for s in mySlaves ( ) :
33 async ( s . r e p l i c a t e ( key , va lue , deps , s h a r d s t a m p )
34
35 def a b o r t s e r v e r ( t i d ) :
36 f or key , v a l u e in prepKV [ t i d ] :
37 u n l o c k w r i t e s ( key )

Note that if multiple transactions concurrently update
different objects in the same shard s, in the commit phase
each write w is applied at s (and at its slaves) in the (total)

order determined by the value of the shardstamp assigned
to w during the validation phase. The pseudocode achieves
this property by locking shards instead of objects during the
validation phase (§6.2).

Listing 3: Client-side pseudocode

1# c l i t s i s t h e c l i e n t ’ s c a u s a l t i m e s t a m p
2def s t a r t T r a n s a c t i o n ( ) :
3TID = n ew Tr an sa c t i on ID ( )
4ReadSet = s e t ( )
5OWSet = s e t ( ) # O v e r w r i t e S e t
6W r i t e s = d i c t ( ) # W r i t e s done by t h i s t r a n s a c t i o n
7c l i t s s a v e = copy ( c l i t s )
8
9def w r i t e ( key , v a l u e ) :
10W r i t e s [ key ] = v a l u e
11
12def r e a d ( key ) :
13i f key in W r i t e s :
14return W r i t e s [ key ] # Re turn t h e v a l u e we wro te
15e l s e :
16s h a r d i d = s h a r d ( key )
17l o c a l s e r v e r = l o c a l ( s h a r d i d )
18c l i s s = c l i t s . ge tSS ( s h a r d i d )
19va lue , deps , s h a r d s t a m p = l o c a l s e r v e r . r e a d ( key )
20i f i s S l a v e ( l o c a l s e r v e r ) and s h a r d s t a m p < c l i s s :
21va lue , deps , s h a r d s t a m p = f i n i s h S t a l e R e a d ( key )
22
23ReadSet . add ( Elem ( key , s h a r d i d , deps , s h a r d s t a m p ) )
24c l i t s . mergeCTS ( deps )
25return v a l u e
26
27def v a l i d a t e ( S1 , S2 ) :
28for x in S1 :
29f or y in S2 :
30i f x . s h a r d s t a m p < y . deps . ge tSS ( x . s h a r d i d ) :
31return F a l s e
32return True
33
34def a b o r t T r a n s a c t i o n ( p r e p a r e d s e r v e r s , t i d ) :
35c l i t s = c l i t s s a v e
36for s e r v e r in p r e p a r e d s e r v e r s :
37s e r v e r . a b o r t s e r v e r ( t i d )
38return F a l s e
39
40def c o m m i t T r a n s a c t i o n ( ) :
41p r e p a r e d s e r v e r s = s e t ( )
42i f not v a l i d a t e ( ReadSet , ReadSet ) :
43return a b o r t T r a n s a c t i o n ( p r e p a r e d s e r v e r s , TID )
44
45for key , v a l u e in W r i t e s :
46m a s t e r s e r v e r = m a s t e r ( s h a r d ( key ) )
47t ry :
48max ss = c l i t s . maxSS ( )
49new ss , deps =
50m a s t e r s e r v e r . p r e p a r e ( TID , key , va lue , max ss )
51c l i t s . upda teSS ( s h a r d ( key ) , new ss )
52OWSet . add ( Elem ( key , s h a r d ( key ) , deps ) )
53p r e p a r e d s e r v e r s . add ( m a s t e r s e r v e r )
54except LOCKED: # can r e t r y l o c k here b e f o r e a b o r t
55return a b o r t T r a n s a c t i o n ( p r e p a r e d s e r v e r s , TID )
56
57i f not v a l i d a t e ( ReadSet , OWSet ) :
58return a b o r t T r a n s a c t i o n ( p r e p a r e d s e r v e r s , TID )
59e l s e :
60f or s e r v e r in p r e p a r e d s e r v e r s :
61s e r v e r . c o m m i t s e r v e r ( TID , c l i t s )
62return True
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Figure 9: Miscellaneous additional evaluation. Spatial, Temporal or DC-Isolate mean that we run Occult using those compression methods while Eventual indicates our baseline,
i.e., Redis Cluster.

B Additional Evaluation
In this section we show additional evaluation that could not
be shown in the main paper due to space constraints. The
experimental setup for this section is identical to the setup
from section 8.1 of the main paper.

B.1 Performance on a write-heavy workload
Figures 9a and 9b show evaluation of non-transactional Oc-
cult on a write-heavy workload (75% reads, 25% writes) with
a Zipfian distribution of operations. Overall Occult suffers
less goodput overhead (6.9%) over Redis on this workload
than the read-heavy workload. The median latency increase
over Redis is still 50μs but tail latency increases by 4ms.

B.2 Commit Latency of Transactions
Figure 9c shows the average commit latency of transactions
from start to commit as a function of Tsize, i.e., the number
of operations in each transaction. The linear rise in latency
is because operations in our workload are dispatched serially
as discussed in the evaluation of transactions in §8.2.

B.3 Storage overhead of Occult over Redis
Cluster

Figure 9d shows the storage overhead of Occult over Redis
Cluster with increasing number of shardstamps per causal
timestamp. For this experiment, we loaded either system with
10 million records and measured the increase in memory us-
age of the server processes in Occult. The increase happens
since Occult stores causal timestamps with each key.
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