
Tolerating Slowdowns in Replicated State Machines using Copilots

Khiem Ngo?, Siddhartha Sen†, Wyatt Lloyd?
?Princeton University, †Microsoft Research

Abstract
Replicated state machines are linearizable, fault-tolerant
groups of replicas that are coordinated using a consensus al-
gorithm. Copilot replication is the first 1-slowdown-tolerant
consensus protocol: it delivers normal latency despite the
slowdown of any 1 replica. Copilot uses two distinguished
replicas—the pilot and copilot—to proactively add redun-
dancy to all stages of processing a client’s command. Copi-
lot uses dependencies and deduplication to resolve potentially
differing orderings proposed by the pilots. To avoid depen-
dencies leading to either pilot being able to slow down the
group, Copilot uses fast takeovers that allow a fast pilot to
complete the ongoing work of a slow pilot. Copilot includes
two optimizations—ping-pong batching and null dependency
elimination—that improve its performance when there are 0
and 1 slow pilots respectively. Our evaluation of Copilot
shows its performance is lower but competitive with Multi-
Paxos and EPaxos when no replicas are slow. When a replica
is slow, Copilot is the only protocol that avoids high latencies.

1 Introduction
Replicated state machines (RSMs) are linearizable, fault-
tolerant groups of replicas coordinated by a consensus algo-
rithm [46]. Linearizability gives the RSM the illusion of be-
ing a single machine that responds to client commands one
by one [21]. Fault-tolerance enables the RSM to continue op-
erating despite the failure of a minority of replicas. Together,
these make RSMs operate as single machines that do not fail.

RSMs are used to implement small services that require
strong consistency and fault tolerance, whose work can be
handled by a single machine. They are used throughout large-
scale systems, such as distributed databases [13, 14], cloud
storage [6, 9], and service managers [25, 39]. While each
RSM is individually small, their pervasive use at scale means
that they collectively use many machines. At such scale, it is
common for some machines to be slow [2, 15]. These slow-
downs arise for a myriad of reasons, including misconfigura-
tions, host-side network problems, partial hardware failures,
garbage collection events, and many others. The slowdowns
manifest as machines whose latency for responding to other
machines is higher than usual.

Thus, RSMs should also be slowdown-tolerant, i.e., pro-
vide similar performance despite the presence of slow repli-
cas. Unfortunately, no existing consensus protocol is
slowdown-tolerant: a single slow replica can sharply increase

their latency. This increased latency decreases availability be-
cause a service that does not respond in time is not meaning-
fully available [5, 6, 20, 48].

Slowdowns can be transient, lasting only a few seconds
to minutes, or they can be long-term, lasting hours to days.
Monitoring mechanisms within and around a system should
eventually detect long-term slowdowns and reconfigure the
slow replica out of the RSM to restore normal perfor-
mance [1, 3, 23, 24, 32, 35]. What remains unsolved is how
to tolerate transient slowdowns in general and how to tolerate
long-term slowdowns in the time between their onset, their
eventual detection, and the end of reconfiguration.

Our ultimate goal is to develop slowdown-tolerant RSMs
that continue to operate as fast RSMs despite the presence of
slow replicas. Given the general rarity of slowdowns, how-
ever, it is unlikely that a single RSM will contain multiple
slow replicas at the same time. Thus, we target the first
and most pragmatic step toward slowdown-tolerant RSMs:
1-slowdown-tolerant RSMs that continue to provide normal
performance despite the presence of 1 slow replica.

To provide 1-slowdown-tolerance, a consensus protocol
must be able to tolerate a slowdown in all stages of processing
a client’s command: receive, order, execute, and reply. No
existing consensus protocol is 1-slowdown-tolerant because
none can handle a slow replica in the ordering stage. Existing
ordering protocols all either rely on a single leader [3, 10, 28]
or rely on the collaboration of multiple replicas [36, 40]. A
single leader is not slowdown-tolerant because if it is slow,
then it slows down the RSM. Multiple replicas collaboratively
ordering commands is not slowdown-tolerant because if any
of those replicas is slow, it slows down the RSM.

Copilot replication is the first 1-slowdown-tolerant consen-
sus protocol. It avoids slowdowns using two distinguished
replicas, the pilot and copilot. The two pilots do all stages of
processing a client’s command in parallel. This ensures all
steps happen quickly even if one pilot is slow. Clients send
commands to both pilots, and both pilots order, execute, and
reply to the client. This proactive redundancy protects against
a slowdown but also makes it more challenging to preserve
consistency and efficiency.

The key challenge for Copilot replication is making its or-
dering stage slowdown tolerant. To provide linearizability, it
needs to ensure the pilots agree on the ordering of client com-
mands, but that in turn would naively require each to wait on
the other if it is slow. Copilot instead allows a pilot to fast
takeover the ordering work of a slow pilot. It does so by per-

sisting its takeover and subsequent ordering to the replicas.
Each pilot has a separate log where it orders client com-

mands. Copilot combines the logs using dependencies, e.g.,
pilot log entry 9 is after copilot log entry 8. Copilot’s or-
dering protocol has two phases—FastAccept, Accept—that
commit commands to the pilots’ logs along with their depen-
dencies. In the FastAccept round, a pilot proposes an initial
dependency for a log entry. If a sufficient number of replicas
agree to this ordering, then this entry has committed on the
fast path and the pilot moves on to execution. Otherwise—if
the replicas have already agreed to a different ordering pro-
posed by the other pilot—then the pilot adopts a dependency
suggested by the replicas that it persists in the Accept round.

Copilot provides crash fault tolerance using similar mecha-
nisms to Multi-Paxos [28, 37] that are applied independently
to the log of each pilot. Copilot combines the logs of the
two pilots using mechanisms inspired by EPaxos [40]. As
such, it provides the same safety and liveness guarantees as
Multi-Paxos and EPaxos. It is safe under any number of crash
faults, and it is live as long as a majority of replicas can com-
municate in a timely manner. In addition, Copilot provides
slowdown tolerance even if one replica is slow or failed.

The core Copilot protocol provides slowdown tolerance.
However, it would naively go to the Accept round often as
the two pilot’s ordering commands continuously interleave
and prevent one or both from taking the fast path. This ad-
ditional round of messages would increase latency and de-
crease throughput relative to traditional consensus protocols
like Multi-Paxos, which need only 1 round in the normal case.

Copilot replication includes two optimizations that keep it
on the fast path almost all the time. When both pilots are fast,
ping-pong batching coordinates them so that they alternate
their proposals, allowing both pilots to commit on the fast
path. When one pilot is slow, null dependency elimination
allows the fast pilot to avoid waiting on commits from the
slow pilot. With null dependency elimination, a fast pilot only
needs to fast takeover the ordering work of the slow pilot that
is in-progress when the slowdown begins.

Copilot replication is implemented in Go and our evalua-
tion compares it to Multi-Paxos and EPaxos in a datacenter
setting. When no replicas are slow, Copilot’s performance
is competitive with Multi-Paxos and EPaxos. When there is
a slow replica, Copilot is the only consensus protocol that
avoids high latencies for client requests.

In summary, this work makes the following contributions:
• Defining slowdown-tolerance and identifying why existing

consensus protocols are not slowdown-tolerant (§2).
• Copilot replication, the first 1-slowdown-tolerant consen-

sus protocol. Copilot replication uses two pilots to ensure
the RSM stays fast, by using proactive redundancy in all
stages of processing a client command (§3).

• Ping-pong batching and null dependency elimination,
which make Copilot’s performance with no slowdowns or
one slowdown competitive with traditional protocols (§5).

2 Slowdown Tolerance
This section explains RSMs, defines slowdown tolerance, and
explains why existing protocols do not tolerate slowdowns.

2.1 Replicated State Machine Primer
RSMs are linearizable, fault-tolerant groups of machines.
They implement a state machine that atomically applies de-
terministic commands to stored state and returns any out-
put [46]. The machines within an RSM are replicas. The
RSM provides fault tolerance by starting the replicas in the
same initial state and then moving them through the same se-
quence of states by executing commands in the same order.
Then, if one of the replicas fails, the remaining replicas still
have the state and can continue providing the service.

RSMs provide linearizability for client commands. Lin-
earizability is a consistency model that ensures that client
commands are (1) executed in some total order, and (2) this
order is consistent with the real-time ordering of client com-
mands, i.e., if command a completes in real-time before com-
mand b begins, then a must be ordered before b [21].

RSMs are coordinated by consensus protocols that deter-
mine a consistent order of client commands that are then ap-
plied across the replicas. An RSM goes through four stages to
process a client command: it receives the command, it orders
the command using the consensus protocol, it executes the
command, and it replies to the client with any output. Each
replica executes commands in the agreed-upon order. A com-
mon way to implement and think about RSMs is that they
agree to put commands in sequentially increasing log entries,
and then execute them in that log order.

2.2 Defining Slowdown Tolerance
We define a slow replica, clarify the relationship between
slow and failed, and then define 1-slowdown-tolerance.

Defining a slow replica. We reason about the speed of a
replica based on the time it takes between when the machine
receives a request over the network and sends a response back
out over the network. This includes the replica’s RSM pro-
cessing and its host-side network processing. It does not in-
clude the time it takes messages to traverse network links.

We say a replica is slow when its responses to messages
take more than a threshold time t over its normal response
time. For example, if a replica typically replies to mes-
sages within 1 ms, and we consider a slowdown threshold of
t =10 ms, then a replica is slow if it takes more than 11 ms
to send responses. The precise setting of t will depend on
the scenario and may even vary over time. For example, if
an OS upgrade increases the processing speed of all repli-
cas, then what was considered normal performance in the past
may now be considered slow. We assume the term “slow” re-
flects the current definition and build our notion of slowdown
tolerance on top of this term—that is, our notion of slowdown
tolerance is robust to changes in what is considered slow.

Failed versus slow replicas. Replicas that have failed are
also slow because they will not reply to messages within the
slowdown threshold time. Thus, all failed replicas are slow.
However, not all slow replicas are failed. Replicas can be
slow but not failed for many reasons, e.g., misconfigurations,
host-side network problems, or garbage collection events. It
is these slow-but-not-failed replicas that we care about most
because existing fault-tolerance mechanisms do not necessar-
ily tolerate them.
Defining s-slowdown-tolerance. Traditionally, clients use
RSMs because they provide a service that does not fail de-
spite f replicas failing. Our definition of slowdown tolerance
mirrors this traditional definition of fault tolerance while ac-
counting for the dynamic nature of what is considered “slow.”
An RSM is s-slowdown-tolerant if it provides a service that
is not slow despite s replicas being slow. More specifically,
sort the replicas {r1, ...,rs, ...,rn} of an RSM according to the
current definition of slow, such that {r1, ...,rs} are the s slow-
est replicas. Let T represent how slow the RSM is—i.e., its
response time properties based on the current definition of
“slow”—and let T ′ represent how slow the RSM would be if
replicas {r1, ...,rs} were all replaced by clones of rs+1. An
RSM is s-slowdown-tolerant if the difference between T and
T ′ is close to zero. In other words, the presence of s slow
replicas should not appreciably slow down the RSM relative
to an ideal scenario where those s replicas are not slow.

In this work, we focus on the practical case of 1-slowdown-
tolerance. Designing RSMs that are s-slowdown-tolerant for
s > 1 is an interesting avenue of future work.

2.3 Why Existing Protocols Slowdown
We explain why existing protocols are not slowdown tolerant
using Multi-Paxos, EPaxos, and Aardvark as examples.
Multi-Paxos. Multi-Paxos [26, 28, 29, 37] is the canonical
consensus protocol. It uses the replicas to elect a leader.
The leader receives client commands and orders them by as-
signing them to the next available position in its log. It per-
sists that order by sending Accept messages to the replicas
and waiting for a majority quorum (including itself) to reply,
which commits the command in that log position. It notifies
other replicas of the commit using a Commit message. The
replicas execute commands in the accepted prefix of the log in
order, i.e., they only execute a command once its log position
is committed and all previous log positions have been exe-
cuted. After executing the command, the replicas reply to the
client with any output. (We describe a variant of Multi-Paxos
that has all replicas reply to the client, similar to PBFT [10],
because it provides more redundancy.)

Figure 1a shows these steps and identifies parts of the pro-
tocol that are not slowdown tolerant. Receiving the client’s
command and running the ordering protocol are not slow-
down tolerant because they are only done by the leader. If
the leader is slow, it slows these stages. In turn, this is evi-
dent to clients whose commands see much higher latency.

client
leader
replica
replica

exe replyorder

(a) Multi-Paxos

client
replica
replica
replica

dep wait*slow path*fast path

exe replyorder

(b) EPaxos

Figure 1: Message diagrams with execution for Multi-
Paxos (a) and EPaxos (b). Orange components indicate
parts of each protocol that are not slowdown tolerant be-
cause they lack redundancy. Blue components indicate
parts with redundancy. EPaxos ordering phases that are
only sometimes necessary are marked with asterisks (*).

Several parts of Multi-Paxos are individually slowdown
tolerant—notably, the Accept messages sent to the replicas to
persist the leader’s ordering of a command. These messages
are sent to all replicas with the leader only needing to hear
back from a majority (including itself). For instance, with 5
replicas the leader sends the messages to the 4 other repli-
cas and can proceed once it hears back from 2. This makes
Multi-Paxos resilient to a non-leader replica being slow.
EPaxos. EPaxos [40] avoids the single leader of Multi-Paxos
with a more egalitarian approach that distributes the work of
receiving, ordering, executing, and replying across all repli-
cas. Each replica in EPaxos receives commands from a subset
of clients and runs the ordering protocol. We call this specific
replica the command’s designated replica. EPaxos’s ordering
protocol uses fine-grained dependencies between commands
to dynamically determine an ordering using FastAccept and
SlowAccept phases. Once a replica knows the dependencies
of its commands, it waits for the final dependencies of its
dependencies to arrive in the DependencyWait phase. Then
a replica totally orders the commands and executes them in
the resulting order. When a replica executes a command for
which it is the designated replica, it sends the reply to the
client. EPaxos can sometimes avoid the SlowAccept and De-
pendencyWait phases.

Figure 1b shows these steps and identifies the parts of
the protocol that are not slowdown tolerant. Receiving the
client’s command, running the ordering protocol, and reply-
ing to the client are all not slowdown tolerant because they
are only done by a command’s designated replica. If the des-

ignated replica is slow, it will slow down all of these stages,
and thus the RSM, for its subset of clients.

DependencyWait can lead to slowdowns for all clients if
any replica is slow. This is because DependencyWait requires
a replica to wait until it learns the dependencies of the de-
pendencies of a command. These transitive dependencies are
necessary for EPaxos to consistently order commands at dif-
ferent replicas. But they are only determined and then sent
from a command’s designated replica. Thus, a slow replica
will be slow to finalize and send out the dependencies for its
designated commands to other replicas. This in turn slows
commands that acquire dependencies on commands ordered
by the slow replica, in addition to commands that use the slow
replica as their designated replica.
Leader election. Consensus protocols with leaders include
a leader election sub-protocol that provides fault tolerance in
case a leader fails. In this sub-protocol, replicas detect when
they think a leader may have failed, elect a new leader, ensure
that the new leader’s log includes all the commands that have
been accepted by a majority quorum, and then have the new
leader start processing new commands.

Some protocols, like Aardvark [3] and SDPaxos [51], have
proposed using leader election to mitigate slowdowns as well,
by having replicas detect when they think a leader is slow
and then trigger the leader election sub-protocol. Unfortu-
nately, this approach does not provide slowdown tolerance for
two reasons. First, leader election is a heavy-weight process
that makes an RSM unavailable while it is ongoing: no new
commands can be processed until a new leader is elected and
brought up to date. Second, leader election is only triggered
when a replica thinks the leader is slow (or failed). Thus, only
the subset of slowdowns detected by the replicas will be mit-
igated, and only after they have been detected. In contrast, 1-
slowdown-tolerance requires an RSM to deliver performance
as if the slowdown did not exist.

Consider the case of Aardvark. Aardvark employs two
mechanisms to detect slowdowns in the leader: the first en-
forces a gradually increasing lower bound on the leader’s
throughput based on past peak performance; the second starts
a heartbeat timer between each batch to ensure the leader
is proposing new batches quickly enough. If the leader’s
throughput drops below the lower bound or if the heartbeat
timeout expires, Aardvark initiates a view change to rotate
the leader among the replicas. These mechanisms provide
only partial slowdown tolerance because each limits the ef-
fects of only the subset of slowdowns it detects. For example,
they do not protect against a replica whose processing path
is slow for client requests but fast for replicas; or a replica
whose responses become gradually slower over time while
maintaining a small gap between successive responses. Such
replicas would still be able to slow down the RSM during
their turn as leader.

Further, using view changes to react to slowdowns can
itself cause slowdowns and become costly. In practice,

leader election timeouts are generally on the order of hun-
dreds [43, 44] or thousands [8, 14, 17] of milliseconds to pre-
vent the excess load, unavailability, and instability that occurs
when leader elections are easily triggered. Thus, any leader
slowdown whose severity is less than these timeouts will go
undetected, as will any slowdown that is not covered by the
detection mechanisms.

2.4 Summary and Insights
The fundamental problem with existing protocols is that they
are detection based. Detection-based approaches do not pro-
tect against slowdowns until they are detected and never pro-
tect against slowdowns that are not detected. As a result, a
consensus protocol cannot be 1-slowdown-tolerant if the path
of a client’s command includes at least one point where it
goes through a single replica. If that replica is slow, the RSM
will be slow (until and if the slowdown is detected). Thus, to
design a 1-slowdown-tolerant replication protocol, we must
proactively ensure there are at least 2 disjoint paths that a
client’s command can take at every stage. If one of these
paths gets stuck at a slow replica, the other path can continue
because we assume only 1 replica becomes slow.

3 Design
The core idea behind Copilot is to use two distinguished repli-
cas, the pilot (P) and the copilot (P′), to redundantly process
every client command. Figure 2 shows the life of an individ-
ual command in Copilot, which begins with a client sending
the command to both pilots. By providing two disjoint paths
for processing a command at every stage, Copilot prevents
any single slow replica from slowing down the RSM.

This section describes the basic design of Copilot, and Sec-
tion 5 describes optimizations that complete its design. This
section first defines our model and then details each major
part of the protocol—ordering, execution, and fast takeovers.
Finally, it covers additional design details and summarizes
why Copilot provides 1-slowdown-tolerance.

3.1 Model
Copilot assumes the crash failure model: a failed process
stops executing and stops responding to messages. Copilot
assumes an asynchronous system: there is no bound on the
relative speed at which processes execute instructions, and
there is no bound on the time it takes to deliver a message.
Copilot requires 2 f +1 replicas to tolerate at most f failures,
and guarantees linearizability as a correctness condition de-
spite any number of failures. Copilot provides 1-slowdown-
tolerance in the presence of any one slow replica.

3.2 Ordering
Copilot’s ordering protocol places client commands into the
pilot log and the copilot log, which are coordinated by the
pilot and copilot, respectively. The two separate logs are or-
dered together using dependencies that indicate the prefix of

client
pilot
replica
copilot

takeover*regular path*fast path

exe replyorder

Figure 2: Message diagram with execution for Copilot.
All components are in blue because all have the neces-
sary redundancy to avoid any slow replica. Phases that
are only sometimes necessary are marked with asterisks
(*). The takeover phase only executes when it is necessary
to prevent one pilot from waiting too long on the other pi-
lot. Copilot’s optimizations (§5) keep it on the fast path
when both pilots are fast and mostly avoid the need for
fast takeovers when one pilot is slow.

the other log that should be executed before a given entry.
Pilots propose initial dependencies for log entries. Replicas
either agree to that ordering or reply with a suggested depen-
dency. Ultimately, each entry has a final dependency that is
used by the execution protocol. The final dependencies be-
tween the pilot and copilot log may form cycles. Copilot’s
execution protocol constructs a single combined log using the
final dependencies between the pilot and copilot logs and a
priority rule that orders pilot entries in a cycle ahead of copi-
lot entries. Figure 3 shows an example of how dependencies
are used to order the entries in the combined log.

Copilot’s ordering protocol persists the command and final
dependency for a log entry to the replicas to ensure they can
be recovered if up to f replicas (including both pilots) fail.
The ordering protocol always includes a FastAccept phase
and sometimes includes an Accept phase. The protocol com-
pletes after the FastAccept phase if enough of the replicas
have agreed with the initial dependency to ensure it will al-
ways be recovered as the final dependency. Otherwise, the
pilot selects a suggested dependency that orders an entry af-
ter enough of the other pilot’s log to ensure linearizability.

The remainder of this subsection follows the ordering pro-
tocol in order, starting with the client sending a command to
the replicas. Our description assumes no fast takeovers (§3.4)
or view-changes (§3.5) for simplicity; with fast takeovers and
view-changes, replicas reject messages when entries are taken
over by another pilot, and entries can be committed with a no-
op as a command.
Clients submit commands to both pilots. Each client has
a unique client ID cliid. Clients assign commands a unique,
increasing command ID cid. Clients send each command, its
client ID, and its command ID to both pilots. The 〈cliid, cid〉
tuple uniquely identifies commands and enables the replicas
to deduplicate them during execution.
Pilots propose commands and an initial dependency.
Upon receiving a command from a client, a pilot puts the

command into its next available log entry. It also assigns the
initial dependency for this entry, which is the most recent en-
try from the other pilot it has seen. It then proposes this as-
signment of command and initial dependency for this entry to
the other replicas by sending them FastAccept messages.
Replicas reply to FastAccepts. When a replica receives a
FastAccept message it checks if the initial dependency for
this entry is compatible with all previously accepted depen-
dencies. If it is, the replica fast accepts the initial depen-
dency. If it is not, the replica rejects the initial dependency
and replies with a new suggested dependency.

A pair of dependencies are compatible if at least one or-
ders its entry after the other. Figure 3a shows examples of
compatible and incompatible dependencies. P′.1 with depen-
dency P.1, and P.2 with dependency P′.1 are compatible be-
cause P.2 is ordered after P′.1. P′.3 with dependency P.2 and
P.3 with dependency P′.2 are incompatible because neither
is ordered after the other. Incompatible dependencies must
be avoided because they could lead to replicas with differ-
ent subsets of the pilot and copilot logs executing entries in
different orders, e.g., one replica executing P.3 then P′.3 and
another executing P′.3 then P.3.

A replica uses the compatibility check to determine if an
initial dependency, P.i with dependency P′. j, is compatible
with all previously accepted dependencies. P.i is ordered af-
ter all previous entries in the P log automatically and after
all entries P′. j or earlier by its dependency. Thus, the check
only needs to look at later entries in the other pilot’s log. The
compatibility check passes unless the replica has already ac-
cepted a later entry P′.k (k > j) from the other pilot P′ with a
dependency earlier than P.i, i.e., P′.k’s dependency is < P.i.

If it has not accepted a later entry, then this same check
will prevent the replica from fast accepting any incompatible
dependencies from the other pilot in the future. If it has ac-
cepted a later entry, but that entry’s dependency is on P.i or
a later entry, then that entry, call it P′.k, is ordered after this
one, i.e., P′. j,P.i, . . . ,P′.k. Thus, in either of these cases the
replica fast accepts the initial dependency and replies with
a FastAcceptOk message to the pilot. Otherwise, it sends a
FastAcceptReply message to the pilot with its latest entry for
the other pilot, P′.k, as its suggested dependency.
Pilots try to commit on the fast path. A pilot tries to gather
a fast quorum of f + b f+1

2 c FastAcceptOk replies (including
from itself).1 If a pilot gathers a fast quorum, then enough
replicas have agreed to its initial dependency that it will al-
ways be recovered from any majority quorum of replicas.
Thus, it is safe for the pilot to commit this entry on the fast
path and continue to execution. The entry’s initial depen-
dency is now its final dependency that is used during execu-
tion. The pilot also sends a Commit message to the other
replicas to inform them of the final dependency for this entry.
(It does not wait for responses for the Commit messages.)

1This size is 2/3, 3/5, 5/7, and 6/9 for common RSM sizes.

P

P’

a b d e c g

a c d f e g

0 1 2 3 4 5

0 1 2 3 4 5

(a) Dependencies join the two logs.

g
5

a
0

b
1P

d
2P

e
3P

c
4P P

a
0P’

c
1P’

d
2P’

f
3P’

e
4P’

g
5P’P

(b) Combined log with duplicates.

g
5

a
0

b
1P

d
2P

e
3P P

c
1P’

f
3P’P

(c) Execution order from the combined log.

Figure 3: Dependencies are used to combine the pilot (P) and copilot (P′) logs (a) into the combined log (b) that is
deduplicated and then used for execution (c). (a) Solid black arrows indicate initial dependencies that became final
dependencies because an entry was committed on the fast path. Dotted red arrows indicate initial dependencies rejected
by the compatibility check because they could lead to different execution orders—e.g., P.3 or P′.3 could be executed
seventh. Solid green arrows indicate final dependencies for entries whose initial dependency was rejected and thus
committed on the regular path. Green arrows may contain cycles, which are consistently ordered by the execution
protocol to derive a combined log. (b) The combined log has duplicates of most commands, shown in gray. (c) A
command is only executed in its first position in the combined log.

A pilot might be unable to gather a fast quorum of Fast-
AcceptOks for two reasons. First, it might receive Fast-
AcceptReplys because replicas rejected the initial depen-
dency as incompatible. Second, it might only receive as few
as f +1 replies instead of the necessary f + b f+1

2 c because up
to f of the 2 f +1 replicas have failed. In either case, the pilot
waits until it receives at least f +1 FastAcceptOks and Fast-
AcceptReplys and then continues to the Accept phase.

Pilots persist the final dependency in the Accept phase.
A pilot selects the final dependency based on the suggested
dependencies in the responses to the FastAccept round. All
FastAcceptOk messages (including the pilot’s) suggest the
initial dependency. The pilot sorts the suggested dependen-
cies in ascending order and then selects the (f+1)-th as the
final dependency. This dependency is high enough to cap-
ture the necessary ordering constraint on this entry: it must
use the (f+1)-th dependency to ensure quorum intersection
with any command that has already been committed and po-
tentially executed by the other pilot, so that this entry is or-
dered after that entry as required by linearizability. It is no
higher to avoid creating more cycles for the other pilot: any
dependency beyond the (f+1)-th will have its own depen-
dency on this entry because this entry arrived at a majority
quorum first.

Then the pilot persists this final dependency by sending
it in an Accept message to all the other replicas. The order-
ing determined by final dependencies in Accept messages can
create cycles at replicas. These cycles are acceptable because
replicas will learn about them and then execute the commands
in the cycles in the same order using the execution protocol.
Thus, the other replicas accept this final dependency and re-
ply with AcceptOk messages. When the pilot receives f + 1
AcceptOks (including from itself) it has committed the entry
on the regular path. It then sends Commit messages to the
other replicas and proceeds to execution.

3.3 Execution
Replicas execute commands in the combined log order. The
combined log contains each client command twice. A replica
only executes a command in its first position in the combined
order. After executing a command, the pilot and copilot reply
to the command’s client. Figure 3 shows an example of a
combined log and its executed subset.
Copilot’s total order of commands. The total order of com-
mands in the combined log is determined by the partial order
of each pilot’s log, the dependencies between them, and a pri-
ority rule. There are three rules that define the total order. (1)
The total order includes the partial order of each pilot’s log,
e.g., P.0 < P.1 < P.2 in Figure 3a. The dependencies between
the logs sometimes create cycles. (2) When the dependen-
cies are acyclic, the total order follows the dependency order,
e.g., P.1 < P′.0 < P′.1 < P.2 in Figure 3a. (3) When the de-
pendencies form a cycle, the total order is determined by the
priority of the pilots: the pilot’s entries are ordered before the
copilot’s, e.g., P.4 < P.5 < P′.5 in Figure 3a.
Executing in order. Replicas learn the final dependencies
for each entry and thus use the same total order. A replica
executes a command once its entry is committed and all pre-
ceding entries in the total order have been executed. The fol-
lowing rules determine when it is safe for a replica to execute
a command in entry P.i with dependency P′. j: (0) P.i is com-
mitted, and (1) it has executed P.(i− 1), and then one of the
following two conditions holds: (2) it has executed P′. j, or
(3) P.i and P′. j are in a cycle and P is the pilot log. The rules
1–3 correspond to the rules that define the total order above.

Replicas can learn of committed entries out of order, e.g.,
a pilot can learn that their entries have committed before they
learn of the commits for their dependencies. To ensure com-
mands are executed in the total order, a replica must wait for
the commit of all potentially preceding entries. For example,
an entry in the pilot log P.i must wait for the commit of all en-
tries < i in the pilot log, the commit of its dependency P′. j in

the copilot log, and the commit of all entries < j in the copilot
log. Copilot’s fast takeover protocol ensures a fast pilot need
not wait long (§3.4) before executing this entry.
Deduplicating execution and replying. In the absence of
failures, each command will be in the combined log twice.
A replica executes each command only once in its first po-
sition. It tracks the commands from each client that have al-
ready been executed using the 〈cliid, cid〉 tuple. The first time
it sees a command, it executes it. If the replica is the current
pilot or copilot, it replies to the client with any output. The
second time it sees a command, it simply marks it as exe-
cuted and moves on. A client thus receives a response from
each pilot for each command; it ignores the second response.

3.4 Fast Takeover
To execute commands in the total order determined by the or-
dering protocol, a pilot sometimes waits on commits from the
other pilot. Waiting on the other pilot for a long time would
not be slowdown tolerant. Copilot’s fast takeover mechanism
avoids a fast pilot waiting too long for a slow pilot by com-
pleting the necessary ordering work for that slow pilot.

All entries in the logs for both pilots have associated bal-
lot numbers, and all messages include ballot numbers as in
Paxos’s proposal numbers [29]. These ballot numbers allow
a fast pilot to safely takeover the work of a slow pilot using
Paxos’s two phases of prepare and accept. When a replica
is elected as either pilot or copilot, that sets a ballot number
for all entries in the corresponding log to be b. Replicas only
(fast) accept entries if the included ballot number is ≥ the
ballot number set for that entry. When a pilot is not slow, its
included ballot numbers are exactly those set for each entry,
and the protocol proceeds as described above.

When a pilot is slow, the other pilot can safely takeover its
work by setting higher ballot numbers on the relevant entries
in the slow pilot’s log. The fast pilot does this by sending Pre-
pare messages with a higher ballot number b′ for the entry to
all replicas. If b′ is higher than the set ballot number for that
entry, the replicas reply with PrepareOk messages and update
their prepared ballot number for that entry. The PrepareOk
messages indicate the progress of an entry at a replica, which
is one of: not-accepted, fast-accepted, accepted, or commit-
ted. The PrepareOk messages include the highest ballot num-
ber for which a replica has fast or regular accepted an entry,
the command and dependency associated with that entry, and
an id of the dependency’s proposing pilot.

After sending the Prepare messages, the fast pilot waits for
at least f +1 PrepareOks (including from itself). If any of the
PrepareOk messages indicate an entry is committed, the pilot
short-circuits waiting and commits that entry with the same
command and dependency. Otherwise, the fast pilot uses the
value picking procedure described below to select a command
and dependency. It then sends Accept messages for that com-
mand and final dependency, waits for f +1 AcceptOk replies,
and then continues the execution protocol.

Recovery value picking procedure. We use value to indi-
cate the command and dependency for a log entry. The fast
takeover mechanism and view-change mechanism use the re-
covery value picking procedure to correctly recover a com-
mand and dependency for any entry that could have been
committed and thus executed. This ensures all replicas ex-
ecute all commands in the same combined log order.

The recovery value picking procedure is complex and its
full details appear in our accompanying technical report [41].
The procedure examines the set S of PrepareOk replies that
include the highest seen ballot number. The first three cases
are straightforward:
1. There are one or more replies r ∈ S with accepted as their

progress. Then pick r’s command and dependency.
2. There are < b f+1

2 c replies r ∈ S with fast-accepted as their
progress. Then pick no-op with an empty dependency.

3. There are ≥ f replies r ∈ S with fast-accepted as their
progress. Then pick r’s command and dependency.

In the first case, the value may have been committed with a
lower ballot number in an Accept phase, so the same value
must be used. In the second case, the value could not have
been committed in either an Accept phase or a FastAccept
phase, so it is safe to pick a no-op. In the third case, the value
may have been committed with a lower ballot number in a
FastAccept phase and it is safe to use the same value. It is
safe because the f or more fast-accept replies plus the entry’s
original proposing pilot form a majority quorum of replicas
that passed the compatibility check. In turn, this ensures that
any incompatible entries from the other pilot’s log will be
ordered after this entry. Thus, it is safe to commit this entry
with its initial dependency.

The remaining case is when there are in the range of
[b f+1

2 c, f) replies r ∈ S with fast-accepted as their progress.
In this case, the value may have been committed with a lower
ballot number in a FastAccept phase, or it might not have be-
cause an incompatible entry in the other pilot’s log reached
the replicas first. In the first subcase we must commit us-
ing the same value, and in the second subcase we must not.
To distinguish between these subcases, the recovering replica
examines the first possible incompatible entry in the other pi-
lot’s log. If that entry is not yet committed, the recovering
replica recovers that entry by repeating the above procedure,
which enables it to safely distinguish between the subcases.
Triggering a fast takeover. A pilot sets a takeover-timeout
when it has a committed command but does not know the fi-
nal dependencies of all potentially preceding entries, i.e., it
has not seen a commit for this entry’s final dependency. If
the takeover-timeout fires, the pilot stops waiting and does
the necessary ordering work itself. It starts the fast takeover
of all entries in the slow pilot’s log that potentially precede
this entry. Our implementation does this in a parallel batch
for all entries. Setting the takeover-timeout too low could
result in spurious fast takeovers that could lead to dueling
proposers. We avoid dueling proposers using the standard

technique of randomized exponential backoff. We avoid spu-
rious fast takeovers by setting a medium takeover-timeout in
our implementation (10 ms). This medium timeout is fine be-
cause null dependency elimination (§5.2) avoids needing to
wait when a pilot is continually slow.

Fast takeovers have a superficial resemblance to leader
elections because both are triggered by one replica timing out
while waiting to hear from another replica. Leader elections
are triggered when one replica does not hear something from
another replica—e.g., a heartbeat or a new proposal. But a
leader can still send something regularly and/or quickly while
being slow in other ways (§2.3). Fast takeovers, on the other
hand, are triggered when one pilot is waiting to execute a spe-
cific client command. This puts them on the processing path
of every request. When combined with the proactive redun-
dancy of having both pilots process each client command, this
bounds the latency of client commands to that of the faster
pilot. If one pilot is slow, the other will process any given
command up until execution and then, if necessary, wait for
the takeover-timeout before completing the specific ordering
work of the other pilot needed to unblock execution.

3.5 Additional Design
The additional parts of Copilot’s design not described in this
section all are similar to normal RSM designs. At-most-once
semantics for client requests are handled using 〈cliid, cid〉
tuples and caching the output associated with a command.
Non-deterministic commands can be handled by having pi-
lots make the commands deterministic by doing the non-
deterministic work (e.g., selecting a random number) and in-
cluding it as input to the command. There will be two differ-
ent non-deterministic versions of the command in the com-
bined total order, but deduplication will ensure only the first
is executed. State used for deduplication is garbage collected
once a command is encountered in the log a second time.

Pilot and copilot election uses view-changes, analogous
to Multi-Paxos’s leader election [37], on the pilot and copi-
lot logs, respectively. The view-change process has a newly
elected pilot or copilot use the recovery value picking proce-
dure described above while committing all unresolved entries
in the log. The two separate logs of the pilots allow Copilot
to elect a new pilot to replace a failed one while the other pi-
lot continues to order and commit commands in its own log.
While this is happening, the active pilot will acquire no new
dependencies. Thus, the active pilot will be able to commit
on the fast path and execute commands without waiting on
any entries in the other log while a new pilot is elected.

3.6 Why Copilot is 1-Slowdown-Tolerant
Copilot achieves 1-slowdown tolerance by ensuring a client
command is never blocked on a single path. That is, there are
always two disjoint paths in the processing of a command,
from when it is received by the RSM to when a response is
sent to the client, and one of the paths must be fast.

When both pilots are fast, 1-slowdown tolerance is triv-
ially achieved even if up to f (non-pilot) replicas are slow or
failed. This is because the regular path only requires a major-
ity of replicas, allowing both pilots’ entries (and their depen-
dencies) to commit and execute. If one of the pilots becomes
slow or fails, then the other (fast) pilot can still commit its en-
tries, but some of these entries might depend on uncommitted
entries in the slow pilot’s log. In this case, the fast pilot does
a fast takeover of these entries and commits them. Thus, the
fast pilot is able to continue executing its own entries. Shortly
after a slowdown, the fast pilot stops acquiring dependencies
on uncommitted entries (or acquires only null dependencies
(§5.2)), eliminating the need for any fast takeovers. Thus, the
performance of the RSM reduces to that of the faster pilot,
satisfying 1-slowdown-tolerance.

4 Correctness
We prove that Copilot replication is both safe, i.e., it provides
linearizability (4.1), and live, i.e., all client commands even-
tually complete (4.2). Our technical report [41] contains the
full proofs; we summarize the intuition for each proof below.

4.1 Safety
To prove linearizability, we must show that client commands
are (1) executed in some total order, and (2) this order is con-
sistent with the real-time ordering of client operations, i.e., if
command a completes in real-time before command b begins,
then a must be ordered before b.

Let P and P′ represent the two pilots. To prove the real-
time ordering property, consider a command a that completes
before a command b begins. Since a completes, it must be
committed in at least one pilot’s log; suppose w.l.o.g. it com-
mits in P’s log at entry P.i. Within P’s log, a is trivially or-
dered before b, because b is issued only after a has been com-
mitted. In P′’s log, a and b may commit in either order, but
the key observation is that b’s entry, call it P′. j, cannot have a
dependency that precedes P.i, because this would be deemed
incompatible during the FastAccept phase (cf. §3.2). Since
P′. j’s dependency is ≥ P.i and P.i’s dependency is < P′. j,
there are no cycles between P.i and P′. j. Thus, P.i is executed
before P′. j, which implies that a is executed before b.

To prove the total ordering property, we first prove the fol-
lowing invariant: if two log entries P.i and P′. j commit at
different pilots, either P.i has a dependency≥ P′. j or P′. j has
a dependency ≥ P.i. This ensures that a dependency path ex-
ists from one entry to the other, preventing them from being
ordered differently at different replicas. We then show that
each entry in a pilot’s log commits with the same commands
and dependency across all replicas, even in the presence of
failures (including failures of both pilots). This relies on the
recovery value picking procedure from §3.4. When an entry
commits on either the fast path or regular path, it is persisted
to at least a majority of replicas. During a fast takeover or
view change—which occur when one or both pilots are slow

(or failed)—the prepare phase will see the entry due to major-
ity quorum intersection, and will reuse it when committing.
If the replies from the prepare phase do not show a committed
entry, then we must look at them more carefully. If any reply
shows the entry is accepted, or if ≥ f replies show it is fast-
accepted, then we commit the entry with its accepted depen-
dency because it might have committed. If < b f+1

2 c replies
show it is fast-accepted, then we can safely commit a no-op
because the entry did not have enough fast accepts to commit.
The final case occurs when the number of replies that show
fast-accepted is in the range [b f+1

2 c, f). In this case, the entry
may or may not have committed, depending on whether there
was an incompatible entry in the other pilot’s log. The recov-
ery value picking procedure resolves this by examining and,
if needed, recovering the first possible incompatible entry in
the other pilot’s log. Note that this procedure does not rely on
replies from either pilot, and instead reasons about any f +1
possible replies received during the prepare phase.

Since each pilot’s log is consistent across a majority of the
replicas, the entries and their dependencies are also consis-
tent, so the commands are executed in the same total order.

4.2 Liveness
To prove liveness, we must show that a command issued by
a client eventually receives a response. Due to FLP [18], we
assume the system is eventually partially-synchronous [16]
and that all messages are eventually delivered.

Our proof uses a double induction. Assume a replica has
executed all entries in P’s log up to P.i and all entries in P′’s
log up to P′.k. We show that the replica eventually executes
either P.(i+ 1) or P′.(k+ 1), or a fast takeover occurs, or a
view change occurs. Consider the failure-free case first.

If the dependency of P.(i+ 1) is null or points to an entry
P′. j ≤ P′.k, then P.(i+ 1) can be executed immediately. If
P′. j > P′.k (i.e., P′. j has not been executed), then Copilot
checks if a cycle exists between P.(i+1) and P′. j. If no cycle
exists, then execution switches to the next entry in P′’s log,
P′.(k+1). P′.(k+1) can be executed because its dependency
must precede Pi (otherwise there would have been a cycle),
which by our inductive assumption has been executed.

If there is a cycle and P has higher priority, Copilot breaks
the cycle in favor of P and executes P.(i+1). If P′ has higher
priority, execution switches to P′’s log. Entry P′.(k+ 1) can
execute immediately if its dependency is ≤ P.i (by our induc-
tive assumption), or after Copilot breaks the cycle in favor of
P′. In all cases, either P.(i+1) or P′.(k+1) is executed.

Now consider the case of failures. If only non-pilots fail,
this reduces to the failure-free case. If P′ is slow/failed, then
P.(i+ 1) may not be able to execute because its dependency
P′. j may not have committed. In this case, P eventually does
a fast takeover of P′. j’s entry. If both pilots are slow/failed,
then neither P.(i+1) nor P′.(k+1) may be able to execute. In
this case, a replica eventually initiates a view change to elect
new pilots. Fast takeovers and view changes cannot repeat

indefinitely by the same argument that basic Paxos and Multi-
Paxos use to ensure progress, by relying on partial synchrony.

5 Optimizations
This section covers ping-pong batching and null dependency
elimination, which improve Copilot’s performance. Ping-
pong batching coordinates the pilots so they propose com-
patible orderings when both are fast. Null dependency elimi-
nation allows a fast pilot to safely avoid waiting on commits
from a slow pilot. Copilot includes both optimizations.

5.1 Ping-Pong Batching
Ping-pong batching coordinates the pilots so they propose
compatible orderings to the replicas. The replicas fast accept
these compatible orderings and thus the pilots commit on the
fast path. With ping-pong batching, each pilot accumulates
a batch of client commands. It assigns each command to its
next available entry, so each batch is a growing assignment
of client commands to consecutive entries. A pilot closes a
batch and tries to FastAccept the batch when either it receives
a FastAccept message from the other pilot or its ping-pong-
wait timeout fires.

When both pilots are fast, they will close batches when
they receive a FastAccept from the other pilot. This causes
FastAccepts to ping-pong back and forth between the two pi-
lots. The pilot closes its first batch and sends out its Fast-
Accepts. When the copilot receives that FastAccept, it closes
its first batch and sends out its FastAccepts. When the pilot
receives that FastAccept, it closes its second batch, and so on.

This ping-ponging ensures that the pilots agree on the or-
dering of their entries. Before a pilot sends out a batch it hears
about the latest batch from the copilot; and the copilot will not
send out another batch until it hears about this batch from the
pilot. Because the pilots agree on the ordering of their entries,
the replicas can always fast accept their proposed orderings.
If the replicas receive the proposed orderings in the same or-
der that the pilots ping-pong propose them, then they agree to
this ordering. Even when replicas receive the proposed order-
ing in a different order, they can still accept them because the
dependencies will be compatible.

If one pilot is slow, the other will close its batches when
the ping-pong-wait timeout fires. This timeout helps provide
slowdown tolerance: even if one pilot is slow, the other need
not wait on it for long.

5.2 Null Dependency Elimination
Null dependency elimination allows a fast pilot to avoid wait-
ing on commits from a slow pilot. It looks inside a depen-
dency to see the command it contains. If the contained com-
mand has already been executed, then execution deduplica-
tion (§3.3) will avoid executing it. We call these null depen-
dencies because their execution will have no effect.

Sometimes a pilot must wait on the commit of the other
pilot’s earlier entries because it needs to know the finalized

dependency of that entry to know the agreed-upon total or-
der. This is unnecessary for null dependencies because they
are not executed. Thus, their final ordering information is ir-
relevant: a pilot need not determine when to execute them
because it will not execute them. Instead, the pilot marks the
null dependency as executed and continues.

When there is a continually slow pilot, null dependency
elimination allows the fast pilot to avoid fast takeovers. A
continually slow pilot will propose entries with a given com-
mand c after the fast pilot has already proposed an entry with
that command c. Thus, the continually slow pilot’s entries
will be null dependencies for the fast pilot that can be safely
skipped. This allows the fast pilot to never wait on commits
from the slow pilot and thus avoids needing to fast takeover
its entries. Fast takeovers are still necessary, however, for the
cases when a pilot becomes slow after it proposes its order-
ing. Thus, when a pilot becomes slow, the other pilot does
a fast takeover of the slow pilot’s ongoing entries to provide
1-slowdown-tolerance. Thereafter, the fast pilot uses null de-
pendency elimination to provide 1-slowdown-tolerance.

6 Evaluation
Copilot provides 1-slowdown-tolerant RSMs by using two pi-
lots to provide redundancy at every stage of processing a com-
mand. Our evaluation demonstrates the benefit and quantifies
the overhead of our approach. Specifically, it asks:
§6.3 Can Copilot tolerate transient slowdowns?
§6.4 Can Copilot tolerate slowdowns of varying severity?
§6.5 Can it tolerate slowdowns of varying manifestations?
§6.6 How does the throughput and latency of Copilot com-

pare to existing consensus protocols?

Summary. We find that Copilot tolerates any one replica
slowdown regardless of the type of slowdown, the role of the
slow replica, or how slow the slow replica becomes. Copi-
lot’s latency under slowdown scenarios is comparable to its
normal case latency when no replicas are slow. Copilot toler-
ates slowdowns better than Multi-Paxos, EPaxos, and Multi-
Paxos with fast view changes. All commands in Multi-Paxos
see high latencies when the leader is slow. EPaxos incurs a
partial slowdown when any of the replicas is slow, and a slow
replica can slow down other normal replicas under high con-
flict rates. Multi-Paxos with fast view changes tolerates the
slowdowns that its low timeout detects, but it does not tolerate
slowdowns that go undetected. Copilot achieves slowdown
tolerance through redundancy. Althought this incurs more
messages and processing, we find that Copilot’s throughput
and latency are competitive with Multi-Paxos and EPaxos.

6.1 Implementation and Baseline
We implemented Copilot in Go using the framework of
EPaxos [40] to enable a fair comparison with the baselines.
We use the framework’s implementations of EPaxos and
Multi-Paxos. The Multi-Paxos implementation is representa-

tive of well optimized Multi-Paxos [11, 26, 37]. Clients send
commands directly to the leader, the leader gets those com-
mands accepted in a single round of messages to the replicas,
it executes the commands in log order, and then it replies to
the clients. Replicas execute commands in log order but do
not reply to the client. Any performance improvement we
made to Copilot’s implementation we also applied to EPaxos
and Multi-Paxos to ensure the comparison remains fair.

EPaxos and Multi-Paxos can use the thrifty optimization
to send and receive messages only to the required number
of other replicas. The thrifty optimization improves perfor-
mance by decreasing load on all replicas in EPaxos and the
leader in Multi-Paxos. It also harms slowdown-tolerance by
eliminating redundancy from the ordering in these systems.
Our latency slowdown experiments do not use the thrifty op-
tion for Multi-Paxos and EPaxos to show them in their best
possible setting. Our throughput and latency experiments
without slowdowns compare to the baselines with and with-
out the thrifty optimization.

The EPaxos and Multi-Paxos baselines send pings every
3 s to make sure each replica has not failed. An alterna-
tive that would make them more slowdown tolerant, though
less stable and unable to use some optimizations, is to use a
very short view-change timeout. Fast-View-Change is a base-
line we use to represent this alternative. Our implementation
builds on the view-change implementation for Multi-Paxos
in the EPaxos framework. It differs from a faithful imple-
mentation in two ways that decrease the time to complete a
view change. Thus, its performance is an upper bound on
that of a more faithful implementation. The first difference
is that view-changes are triggered by a master process that
never fails or becomes slow. The master receives heartbeats
from the current leader every 1 ms and triggers a view-change
as soon as 10 ms have elapsed with no heartbeats. (This time-
out matches the fast-takeover timeout for Copilot.) The sec-
ond difference is that a view-change immediately identifies
the next leader instead of running an election, making the
view-change process similar to that for viewstamped repli-
cation [34, 42]. If a client has not received a response to its
command after 10 ms, it contacts the master to learn the cur-
rent leader and resubmits its command to that leader.

6.2 Experimental Setup
Experiments were run on the Emulab testbed [49], where we
have exclusive bare-metal access to 21 machines. Each ma-
chine has one 2.4GHz 64-bit 8-Core processor, 64GB RAM,
and is networked with 1Gbps Ethernet. These machines
are located in the same datacenter with an average network
round-trip time of about 0.1ms. Thus, our evaluation of Copi-
lot is focused on a datacenter setting with small latencies be-
tween replicas. Evaluation and optimization of Copilot for a
geo-replicated setting is an interesting avenue of future work.
Configuration and workloads. We use 5 machines to create
an RSM with 5 replicas that can tolerate at most 2 failures.

(a) Copilot. (b) Multi-Paxos. (c) EPaxos.

Figure 4: Client command latency for Copilot, Multi-Paxos, Fast-View-Change, and EPaxos with transient slowdowns.
Transient slowdowns are injected every second starting at time 2 seconds. The severity and duration of the slowdowns
in order are 0.5 ms, 1 ms, 2 ms, 5 ms, 10 ms, 20 ms, 40 ms, and 80 ms. Multi-Paxos and EPaxos have spikes in latency
proportional to the slowdowns. Fast-View-Change tolerates the slowdowns using view changes to limit the maximum
latency. Copilot tolerates the transient slowdowns because fast takeovers limit maximum latency.

We use 5-replica RSMs since they are a common setup for
fault-tolerant services inside a datacenter [8]. Clients run on
separate machines in the same facility. We use a simple work-
load with 8 byte commands that overwrite 4 bytes of data.

We run each experiment for 3 minutes and exclude the first
and the last 30 seconds of each run to avoid experimental
artifacts. To determine how to fairly configure our latency
experiments, we probed the operation of each system under
increasing load. For each system, we choose the number of
closed-loop clients where the system operates at 50% of its
peak load. This reduces the effect of queuing delays.

We enable batching for EPaxos and Multi-Paxos with a
batching interval of 0.1ms, which is similar to the effective
length of Copilot’s ping-pong batches. This choice of batch-
ing interval ensures all systems have similar median latency at
low and moderate load. Copilot uses a ping-pong-wait time-
out of 1ms and a fast-takeover timeout of 10ms.

For Multi-Paxos, clients send commands to the leader. For
Copilot, clients send commands to both pilots. For EPaxos,
each client has a designated replica it sends commands to.

EPaxos includes an interface that allows service builders to
provide specialized logic in their implementation that iden-
tifies when two commands conflict. This allows EPaxos to
avoid needing to determine an order between non-conflicting
commands. We compare to EPaxos with 0%, 25%, and 100%
conflicts. The 0% case is EPaxos’s best case. The 100% case
is EPaxos’s worst case and also represents its performance
when used as a generic RSM without its specialized interface.
The 25% case is a middle ground.

Severity and duration. Slowdowns vary in their severity and
their duration. The severity of a slowdown indicates its mag-
nitude, e.g., a replica taking an extra 10 ms or an extra 80 ms
to send responses. The duration of a slowdown indicates how
long the slowdown lasts, e.g., 1 second or 10 minutes. For ex-
ample, a replica could take an extra 10 ms to respond to every
message it receives during a 1-second duration. We present
experiments that evaluate tolerance of slowdowns of varying

severity, duration, and manifestation.

6.3 Transient Slowdowns
Figure 4 shows the latency of client commands for Copilot,
Multi-Paxos, and EPaxos as transient slowdowns of increas-
ing severity are injected. Transient slowdowns are injected
every second starting at time 2 seconds. The injected slow-
downs are pauses of increasing length, i.e., the severity and
duration of the slowdown are both equal to the pause length.
The pause lengths are 0.5 ms, 1 ms, 2 ms, 5 ms, 10 ms, 20 ms,
40 ms, and 80 ms. The pauses are injected by stopping all pro-
cessing for the specified length inside the go processes. The
slowdowns are injected on a pilot for Copilot, on the leader
for Multi-Paxos, and on a replica for EPaxos.

Multi-Paxos and EPaxos slow down. Multi-Paxos and
EPaxos each have latency spikes that increase proportion-
ally with the length of the injected pause. For instance, for
pauses of 40 ms, Multi-Paxos and EPaxos have commands
with 40.1 ms and 41.5 ms respectively.

Fast-View-Change tolerates transient slowdowns. Fast-
View-Change limits the maximum latency by detecting the
pause and switching to a new leader. Maximum latency is
controlled by the client timeout and view-change timeout.
We see a maximum latency around their sum of 20 ms when
a client needs to retransmit its command twice because the
view-change had not completed after its first timeout. For in-
stance, Fast-View-Change has commands with 25 ms latency
for a 40 ms pause.

Copilot tolerates transient slowdowns. The latency for
Copilot remains low and close to its latency when there are
no slowdowns. For very small pauses, e.g., 0.5 ms, Copilot
simply waits out the pause. This does not mask the slow-
down and does show up in client command latency, but its
magnitude is small enough that latency remains similar. For
longer pauses, Copilot’s fast-takeover timeout of 10 ms fires
and the fast pilot completes the ordering work of the slow pi-
lot. This keeps latency low and close to the timeout value.
For instance, the maximum command latency is 12.6 ms for

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Command Latency (ms) (log)

0
0.5

1
2
5

10
20
30
40

(a) Copilot.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Command Latency (ms) (log)

0
0.5

1
2
5

10
20
30
40

(b) Multi-Paxos.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Command Latency (ms) (log)

0
0.5

1
2
5

10
20
30
40

(c) EPaxos-25%.

Figure 5: CDF of command latency for Copilot, Multi-Paxos, and EPaxos in the normal case (0) and with slowdowns
of varying severity in ms. Slowdowns are injected for the duration of the experiment. Multi-Paxos and EPaxos have
latency that increases proportionally with the severity of the slowdown. Copilot’s latency stays low during the slowdowns
because the fast pilot completes all stages of processing commands. In addition, null dependency elimination avoids
having the fast pilot either wait on or fast takeover the ordering work of the slow pilot during the duration of a slowdown.

a 40 ms pause. The maximum latency during the onset of
a slowdown is thus controlled by the fast-takeover timeout
value. Latency as a slowdown continues, however, is even
lower as our next experiment shows.

6.4 Slowdowns of Varying Severity
Figure 5 shows a CDF of latency for Copilot, Multi-Paxos,
and EPaxos in the normal case (0 slowdown) and with slow-
downs of varying severity that last for the duration of the ex-
periment. A slowdown of the given severity is injected on
one of the pilots for Copilot, the leader for Multi-Paxos, and
a replica for EPaxos. The duration of these slowdowns is
the length of the experiment (they last longer than the slow-
downs evaluated in the previous subsection). The slowdowns
are injected using Linux’s traffic control (tc) to add delay cor-
responding to the severity on the slow replica. The severity
ranges from 0.5 ms to 40 ms.

Multi-Paxos and EPaxos slow down. Figure 5b shows the
CDF of latency for Multi-Paxos. The latency of client com-
mands in Multi-Paxos is proportional to 2× the severity of
the slowdown. The slowdown affects latency twice because
the leader appears twice on the path for client commands:
the message path is client-to-leader-to-replicas-to-leader-to-
client. Fast-View-Change has similar results to Multi-Paxos
when the severity of the slowdown is less than the view-
change timeout and it avoids the slowdown using a view-
change when the severity is greater than the timeout.

Figure 5c shows the CDF of latency for EPaxos with 25%
conflicts. Normal case latency is higher than Multi-Paxos
because EPaxos processes batches together, and if one com-
mand in a batch acquires a dependency then the entire batch
goes to the slow path and does a dependency wait. With 25%
conflicts, almost all batches have at least one command with
a dependency and thus almost all have higher latency than
Multi-Paxos. Slowdowns have two effects for EPaxos that
result in two step functions in latency. First, the upper per-
centiles show a slowdown proportional to 2× the severity of
the slowdown. This is due to the increased latency for com-

mands whose designated replica is the slow replica. Second,
the middle percentiles show a slowdown proportional to 1×
the severity of the slowdown. This is due to the increased
latency for commands that are ordered by a fast replica but
that acquire a dependency on a command ordered by the slow
replica. These commands wait on commits from the slow
replica (§2.3). The CDF of latency for EPaxos with 0% con-
flicts (not shown) shows only the first effect. The CDF of
latency for EPaxos with 100% conflicts (not shown) shows
both effects with the latency of nearly all commands affected.

Copilot tolerates slowdowns of varying severity. Figure 5a
show the CDF of latency for Copilot. Normal case latency is
similar to Multi-Paxos. Copilot’s latency under these slow-
downs is related to its ping-pong-wait timeout of 1 ms. The
fast pilot forms batches when either it hears from the slow
pilot or its ping-pong-wait timeout fires. The fast pilot or-
ders client commands in earlier batches than the slow pilot.
Thus, null dependency elimination enables the fast pilot to
avoid waiting on the slow pilot or having to fast takeover its
work. The larger batches result in an increase in the latency
for Copilot compared to its normal case, but this increase is
small and overall performance is similar. Even in the worst
case during a slowdown, median, 90th, and 99th percentile la-
tencies are within 0.6 ms, 2 ms, and 4 ms of their values when
there is no slowdown, respectively. Thus, we conclude that
Copilot’s implementation is resilient to slowdowns.

6.5 Slowdowns of Varying Manifestations
Figure 6 compares latency CDFs for Copilot and Fast-View-
Change for three slowdowns with varying manifestations.
The slowdowns are injected on the leader for Fast-View-
Change and one of the pilots for Copilot.

Figure 6a considers a slowdown manifested by a slowed
processing path for client commands with a fast processing
path for messages from replicas. This experiment uses tc to
inject 40 ms of delay. Fast-View-Change slows down in this
case with 40 ms higher latency than usual because the client
command processing path on the leader is slow.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Command Latency (ms) (log)

Copilot
FVC

(a) Slow for clients.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Command Latency (ms) (log)

Copilot
FVC

(b) Slow with fast heartbeats.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000

C
D

F

Command Latency (ms) (log)

Copilot
FVC

(c) Gradually slow.

Figure 6: CDF of client command latency for Copilot and Fast-View-Change with slowdowns of varying manifestations.
Fast-View-Change’s view changes are not triggered in these cases and latency spikes. Copilot’s proactive redundancy
tolerates these slowdowns and delivers latency similar to the normal case.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0 50 100 150 200 250 300 350

M
ed

ia
n

La
te

nc
y

(m
s)

Throughput (Kops/sec)

EPaxos-100%
EPaxos-25%

EPaxos-0%
Copilot

Multi-Paxos

Figure 7: Throughput and latency without the thrifty op-
timization of the systems when there are no slow replicas.

Figure 6b shows a CDF of latency when the leader is slow
but still quickly replies to heartbeats. This experiment in-
jects 40 ms of delay to non-heartbeat processing directly in
the Go process. Fast-View-Change slows down in this case
with 80 ms higher latency than usual because the slow leader
appears twice on the processing path for client commands.

Figure 6c shows a CDF of latency when the leader becomes
gradually slower over time. The leader’s processing of all
messages (including heartbeats) is delayed by X ms, where X
starts at 5 ms and increases by 1 ms every 1 second. This de-
lay is directly injected in the Go process. Fast-View-Change
slows down in this case with a CDF of latency that mirrors
the increasing slowness of its leader.

In each of these slowdowns Fast-View-Change’s low view
change timeout is not triggered because the replicas are still
regularly receiving messages from the leader. Multi-Paxos
and EPaxos’s view changes similarly would not be triggered.
In contrast, Copilot’s proactive redundancy tolerates these
slowdowns and delivers latency similar to the normal case.

6.6 Performance Without Slow Replicas
Figure 7 shows the throughput and latency of the systems
without the thrifty optimization as we increase load. We
find that Copilot’s throughput is about 8% lower than Multi-
Paxos’s. Copilot’s latency at low/moderate load is similar to
Multi-Paxos’s; at high load its latency is higher but still low.

EPaxos’s best case of 0% conflicts achieves the same peak

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4

 0 50 100 150 200 250 300 350

M
ed

ia
n

La
te

nc
y

(m
s)

Throughput (Kops/sec)

EPaxos-100%
EPaxos-25%

EPaxos-0%
Copilot

Multi-Paxos

Figure 8: Throughput and latency with the thrifty opti-
mization of the systems when there are no slow replicas.

throughput as Multi-Paxos with slightly higher latency. Un-
der moderate and high conflict rates, EPaxos incurs another
round-trip to commit on the slow path more often, and hence
has higher latency and lower throughput. EPaxos processes
an entire batch on the slow path if any command in the batch
has a conflict. With 25% conflicts, almost all batches have
at least one command with a conflict and thus almost all are
processed on the slow path, resulting in similar performance
to 100% conflicts. In contrast, Copilot and Multi-Paxos are
not affected because they both totally order all commands.

Figure 8 shows the throughput and latency of all systems
with the thrifty optimization as we increase load. Copilot
does not use the thrifty optimization because its elimination
of redundancy is not slowdown tolerant. Thus, Copilot’s per-
formance is the same. Multi-Paxos and EPaxos both see
their maximum throughput increase. This makes EPaxos’s
best case (0% conflicts) provide clearly the highest through-
put. With conflicts, however, its throughput is still lower than
that of Copilot and Multi-Paxos. The thrifty optimization
makes Multi-Paxos provide higher throughput than Copilot
by about 35K commands/second, i.e., Copilot achieves 13%
lower maximum throughput than Multi-Paxos. Multi-Paxos
has higher throughput in this case because it needs to send
and receive fewer messages.

Copilot’s low latency and high throughput when there are
no slow replicas is due to ping-pong batching. The pilots co-
ordinate with each other to ensure that replicas agree with

their proposed ordering, allowing them to always commit on
the fast path. Committing on the fast path keeps the amount of
work each pilot needs to do for its own batches similar to that
of a leader in Multi-Paxos. However, a pilot also needs to do
the work of a replica for the other pilot’s batches. Thus, Copi-
lot’s lower but competitive performance with Multi-Paxos is
as we expect, because the pilots and leader are the throughput
bottlenecks in each system respectively.

7 Related Work
This section reviews related work. To the best of our knowl-
edge, all previous consensus protocols are not 1-slowdown-
tolerant. Copilot’s primary distinction is thus being the first
1-slowdown-tolerant consensus protocol. We review related
work in consensus protocols, Byzantine consensus protocols,
and slowdown cascades.
Consensus protocols. There is a growing body of consen-
sus protocols that started with Paxos [28] and Viewstamped
Replication [42]. New consensus protocols improve latency
and/or throughput on these baselines [4, 22, 30, 31, 33, 36,
45, 51]. Others are designed to be more understandable [44].
SDPaxos [51] includes a throughput-based detection mecha-
nism, similar to that of Aardvark (§2.3), that triggers a view-
change for its sequencer that orders commands. Gryff unifies
shared registers and consensus [7]. Its unproxied shared reg-
ister operations are slowdown tolerant while its consensus op-
erations are not. If the network ordering from NOPaxos [33]
could be made slowdown tolerant, it could be used to elimi-
nate the need for ping-pong batching to keep the pilots on the
fast path in the normal case. To the best of our knowledge,
none of these protocols are 1-slowdown-tolerant.
Paxos, EPaxos, Mencius. We drew inspiration in our design
from Paxos, EPaxos, and Mencius. Our fast takeover proto-
col uses the classic 2-phase Paxos [28] on a slow pilot’s log to
enable a fast pilot to complete its ordering work. Our order-
ing protocol is influenced by EPaxos’s ordering protocol [40].
It draws its use of dependencies and a multi-round ordering
protocol with a fast path from EPaxos. Copilot’s ordering
differs because it orders the same commands twice, totally
orders all commands, has only one dependency per entry, and
includes fast takeovers. Mencius has all replicas work collab-
oratively to avoid doing redundant work or conflicting with
each other [36]. Our ping-pong batching is inspired by Men-
cius and lets our pilots avoid conflicting with each other.
Byzantine consensus protocols. There is also a vast body
of literature on Byzantine consensus protocols [3, 10, 12, 19,
27, 47, 50]. These protocols tolerate Byzantine faults, which
Copilot does not. Most use the approach that PBFT intro-
duced for practical systems of having multiple replicas exe-
cute a command and reply to the client. Copilot’s use of both
pilots to execute and reply to clients is inspired by this design.
Aardvark. Aardvark focuses on ensuring reliable minimum
performance in BFT environments [3]. It employs two mech-

anisms to detect slowdowns in the leader: a gradually increas-
ing lower bound on the leader’s throughput, and an inter-
batch heartbeat timer that ensures the leader is proposing
new batches quickly enough. Both mechanisms trigger view
changes to rotate the leader among replicas. As explained in
§2.3, these mechanisms are detection based and hence pro-
vide only partial slowdown tolerance for Aardvark, because
each limits the effect of a subset of slowdowns and incurs
view changes that themselves cause slowdowns (§2.3). Copi-
lot, in contrast, provides 1-slowdown-tolerance, because it
proactively provides an alternative path for processing at all
times, including during a view change to replace a slow pilot.

Note that Aardvark is designed for a Byzantine environ-
ment where replicas can be malicious. Copilot assumes nodes
follow its protocol and thus would not work in a malicious
setting. Focusing on crash faults allows Copilot to use tech-
niques like fast takeovers and ping-pong batching to provide
slowdown tolerance with good performance, which would be
vulnerable to manipulation by a Byzantine replica. An inter-
esting question to explore is whether mechanisms from Copi-
lot and Aardvark can be combined to provide 1-slowdown-
tolerance in a Byzantine environment.

Slowdown cascades. Occult is a scalable, geo-replicated
data store that is immune to slowdown cascades [38]. Slow-
down cascades occur when one slow shard of a scalable sys-
tem cascades and affects other shards. They are a mostly
orthogonal problem to slowdown tolerance because they are
about preventing slowdowns of one part (shard) of a system
from affecting other parts (shards) that do different work.
Slowdown tolerance, in contrast, is about preventing slow-
downs within an RSM, which may be one part (shard) of a
larger system. Slowdown tolerance within shards decreases
the likelihood of slowdown cascades. But they are mostly or-
thogonal, because cascades can still occur if there are more
than s slowdowns within a shard.

8 Conclusion
Copilot replication is the first 1-slowdown-tolerant consen-
sus protocol. Its pilot and copilot both receive, order, exe-
cute, and reply to all client commands. It uses this proactive
redundancy and a fast takeover mechanism to provide slow-
down tolerance. Despite its redundancy, Copilot replication’s
performance is competitive with existing consensus protocols
when no replicas are slow. When a replica is slow, Copilot is
the only consensus protocol that avoids high latencies.

Acknowledgements. We thank our shepherd, Allen
Clement, and the anonymous reviewers for their insights
and help in refining the ideas of this work. We are grateful
to Christopher Hodsdon and Jeffrey Helt for their feedback.
This work was supported by the National Science Foundation
under grant number CNS-1827977.

References

[1] M. K. Aguilera and M. Walfish. No time for asynchrony.
In ACM SIGOPS Workshop on Hot Topics in Operating
Systems (HotOS), 2009.

[2] P. Ajoux, N. Bronson, S. Kumar, W. Lloyd, and K. Veer-
araghavan. Challenges to adopting stronger consistency
at scale. In ACM SIGOPS Workshop on Hot Topics in
Operating Systems (HotOS), 2015.

[3] L. Alvisi, A. Clement, M. Dahlin, M. Marchetti, and
E. Wong. Making byzantine fault tolerant systems tol-
erate byzantine faults. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI),
Apr. 2009.

[4] B. Arun, S. Peluso, R. Palmieri, G. Losa, and B. Ravin-
dran. Speeding up consensus by chasing fast decisions.
In IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2017.

[5] B. Beyer, C. Jones, J. Petoff, and N. R. Murphy. Site
Reliability Engineering: How Google Runs Production
Systems. O’Reilly Media, Inc., 2016.

[6] M. Brooker, T. Chen, and F. Ping. Millions of tiny
databases. In USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), 2020.

[7] M. Burke, A. Cheng, and W. Lloyd. Gryff: Unify-
ing consensus and shared registers. In USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2020.

[8] M. Burrows. The Chubby lock service for loosely-
coupled distributed systems. In USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
Nov. 2006.

[9] B. Calder, J. Wang, A. Ogus, N. Nilakantan,
A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu,
H. Simitci, et al. Windows Azure Storage: a highly
available cloud storage service with strong consistency.
In ACM Symposium on Operating System Principles
(SOSP), 2011.

[10] M. Castro and B. Liskov. Practical Byzantine fault tol-
erance. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Feb. 1999.

[11] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. In ACM Sympo-
sium on Principles of Distributed Computing (PODC),
2007.

[12] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. Upright cluster services.
In ACM Symposium on Operating System Principles
(SOSP), 2009.

[13] Cockroach DB. https://www.cockroachlabs.
com/product/, 2020.

[14] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,

J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2012.

[15] J. Dean and L. A. Barroso. The tail at scale. Communi-
cations of the ACM, 56(2):74–80, 2013.

[16] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in
the presence of partial synchrony. Journal of the ACM,
35(2):288–323, Apr. 1988.

[17] etcd docs — Tuning. https://etcd.io/docs/
v3.4.0/tuning/, 2020.

[18] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impos-
sibility of distributed consensus with one faulty process.
Journal of the ACM, 32(2):374–382, Apr. 1985.

[19] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić.
The next 700 BFT protocols. In ACM SIGOPS Eu-
ropean Conference on Computer Systems (EuroSys),
2010.

[20] T. Hauer, P. Hoffmann, J. Lunney, D. Ardelean, and
A. Diwan. Meaningful availability. In USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2020.

[21] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 1990.

[22] H. Howard, D. Malkhi, and A. Spiegelman. Flexi-
ble paxos: Quorum intersection revisited. In Interna-
tional Conference on Principles of Distributed Systems
(OPODIS), 2017.

[23] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang,
M. Chintalapati, and R. Yao. Gray failure: The achilles’
heel of cloud-scale systems. In ACM SIGOPS Workshop
on Hot Topics in Operating Systems (HotOS), 2017.

[24] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang.
Capturing and enhancing in situ system observability
for failure detection. In USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), 2018.

[25] M. Isard. Autopilot: automatic data center management.
Operating Systems Review, 41(2):60–67, 2007.

[26] J. Kirsch and Y. Amir. Paxos for system builders: An
overview. In ACM SIGOPS Workshop on Large-Scale
Distributed Systems and Middleware (LADIS), 2008.

[27] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: Speculative byzantine fault toler-
ance. In ACM Symposium on Operating System Princi-
ples (SOSP), Oct. 2007.

[28] L. Lamport. The part-time parliament. ACM Transac-

https://www.cockroachlabs.com/product/
https://www.cockroachlabs.com/product/
https://etcd.io/docs/v3.4.0/tuning/
https://etcd.io/docs/v3.4.0/tuning/

tions on Computer Systems (TOCS), 16(2), 1998.
[29] L. Lamport. Paxos made simple. ACM Sigact News, 32,

2001.
[30] L. Lamport. Generalized consensus and Paxos. Tech-

nical Report MSR-TR-2005-33, Microsoft Research,
March 2005.

[31] L. Lamport. Fast paxos. Distributed Computing, 19(2):
79–103, Oct. 2006.

[32] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and
M. Walfish. Detecting failures in distributed systems
with the falcon spy network. In ACM Symposium on
Operating System Principles (SOSP), 2011.

[33] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R.
Ports. Just Say NO to Paxos Overhead: Replacing Con-
sensus with Network Ordering. In USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI), 2016.

[34] B. Liskov and J. Cowling. Viewstamped replica-
tion revisited. http://www.pmg.lcs.mit.edu/
papers/vr-revisited.pdf, 2012.

[35] C. Lou, P. Huang, and S. Smith. Comprehensive and
efficient runtime checking in system software through
watchdogs. In ACM SIGOPS Workshop on Hot Topics
in Operating Systems (HotOS), 2019.

[36] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building efficient replicated state machines for WANs.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), Dec 2008.

[37] D. Mazières. Paxos made practical. http:
//www.scs.stanford.edu/˜dm/home/
papers/paxos.pdf, 2007.

[38] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bron-
son, and W. Lloyd. I can’t believe it’s not causal! scal-
able causal consistency with no slowdown cascades. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2017.

[39] Y. Mei, L. Cheng, V. Talwar, M. Levin, G. Jacques-
Silva, N. Simha, A. Banerjee, B. Smith, T. Williamson,
S. Yilmaz, W. Chen, and G. J. Chen. Turbine: Face-
book’s Service Management Platform for Stream Pro-
cessing. In International Conference on Data Engineer-
ing (ICDE), 2020.

[40] I. Moraru, D. G. Andersen, and M. Kaminsky. There
is more consensus in egalitarian parliaments. In ACM
Symposium on Operating System Principles (SOSP),
2013.

[41] K. Ngo, S. Sen, and W. Lloyd. Tolerating slowdowns
in replicated state machines using copilots. Technical
Report TR-004-20, Princeton University, Computer Sci-
ence Department, 2020.

[42] B. M. Oki and B. H. Liskov. Viewstamped replication:
A general primary copy. In ACM Symposium on Princi-

ples of Distributed Computing (PODC), Aug. 1988.
[43] D. Ongaro. Consensus: Bridging Theory And Practice.

PhD thesis, Stanford University, 2014.
[44] D. Ongaro and J. Ousterhout. In search of an un-

derstandable consensus algorithm. In USENIX Annual
Technical Conference (ATC), 2014.

[45] D. R. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krish-
namurthy. Designing distributed systems using approx-
imate synchrony in data center networks. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2015.

[46] F. B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Computer Surveys, 22(4), 1990.

[47] S. Sen, W. Lloyd, and M. J. Freedman. Prophecy: Using
history for high-throughput fault tolerance. In USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), 2010.

[48] SLA summary for Azure services. https:
//azure.microsoft.com/en-gb/support/
legal/sla/summary/, 2020.

[49] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-
ruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An integrated experimental environment
for distributed systems and networks. In USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI), 2002.

[50] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and
E. Cecchet. Zz and the art of practical BFT execution. In
ACM SIGOPS European Conference on Computer Sys-
tems (EuroSys), 2011.

[51] H. Zhao, Q. Zhang, Z. Yang, M. Wu, and Y. Dai.
SDPaxos: Building efficient semi-decentralized geo-
replicated state machines. In ACM Symposium on Cloud
Computing (SoCC), 2018.

http://www.pmg.lcs.mit.edu/papers/vr-revisited.pdf
http://www.pmg.lcs.mit.edu/papers/vr-revisited.pdf
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
http://www.scs.stanford.edu/~dm/home/papers/paxos.pdf
https://azure.microsoft.com/en-gb/support/legal/sla/summary/
https://azure.microsoft.com/en-gb/support/legal/sla/summary/
https://azure.microsoft.com/en-gb/support/legal/sla/summary/

	Introduction
	Slowdown Tolerance
	Replicated State Machine Primer
	Defining Slowdown Tolerance
	Why Existing Protocols Slowdown
	Summary and Insights

	Design
	Model
	Ordering
	Execution
	Fast Takeover
	Additional Design
	Why Copilot is 1-Slowdown-Tolerant

	Correctness
	Safety
	Liveness

	Optimizations
	Ping-Pong Batching
	Null Dependency Elimination

	Evaluation
	Implementation and Baseline
	Experimental Setup
	Transient Slowdowns
	Slowdowns of Varying Severity
	Slowdowns of Varying Manifestations
	Performance Without Slow Replicas

	Related Work
	Conclusion

