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GEO-REP L ICATED S TO RAGE P ROV IDES  copies of the same 
data at multiple, geographically distinct locations. 
Facebook, for example, geo-replicates its data (profiles, 
friends lists, likes, and so on) to datacenters on the 
East and West coasts of the U.S. and in Europe. In each 
datacenter, a tier of separate Web servers accepts 

browser requests and then handles 
those requests by reading and writing 
data from the storage system, as shown 
in Figure 1. 

Geo-replication brings two key 
benefits to Web services: fault toler-
ance and low latency. It provides fault 
tolerance through redundancy: if one 
datacenter fails, others can continue 
to provide the service. It provides low 
latency through proximity: clients can 
be directed to and served by a nearby 
datacenter to avoid speed-of-light de-
lays associated with cross-country or 
round-the-globe communication. 

Geo-replication brings its chal-
lenges, however. The famous CAP 
theorem, conjectured by Brewer1 and 
proved by Gilbert and Lynch,7 shows 
it is impossible to create a system that 
has strong consistency, is always avail-
able for reads and writes, and is able 

to continue operating during network 
partitions. Each of these properties is 
highly desirable. Strong consistency—
more formally known as linearizabil-
ity—makes programming easier. Avail-
ability ensures front-end Web servers 
can always respond to client requests. 
Partition tolerance ensures the system 
can continue operating even when 
datacenters cannot communicate with 
one another. Faced with the choice of 
at most two of these properties, many 
systems5,8,16 have chosen to sacrifice 
strong consistency to ensure avail-
ability and partition tolerance. Other 
systems—for example, those that deal 
with money—sacrifice availability and/
or partition tolerance to achieve the 
strong consistency necessary for the 
applications built on top of them.4,15 

The former choice of availability 
and partition tolerance is not surpris-
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single request; therefore, low latency 
in the storage system is critical for en-
abling fast page-load times, which are 
linked to user engagement with a ser-
vice—and, thus, revenue. An always-
available and partition-tolerant system 
can provide low latency on the order of 
milliseconds by serving all operations 
in the local datacenter. A strongly con-
sistent system must contact remote 
datacenters for reads and/or writes, 
which takes hundreds of milliseconds. 

Thus, systems that sacrifice strong 
consistency gain much in return. They 
can be always available, guarantee 
responses with low latency, and pro-
vide partition tolerance. In Clusters 
of Order-preserving Servers (COPS),11 
developed for our original work on 
this subject, we coined the term ALPS 
for systems that provide these three 
properties—always available, low la-
tency, and partition tolerance—and 
one more: scalability. Scalability im-
plies that adding storage servers to 
each datacenter produces a propor-
tional increase in storage capacity 
and throughput. Scalability is critical 
for modern systems because data has 
grown far too large to be stored or 
served by a single machine. 

The question remains as to what 
consistency properties ALPS systems 
can provide. Before answering this, 
let’s consider the consistency offered 
by existing ALPS systems. For systems 
such as Amazon’s Dynamo, LinkedIn’s 
Project Voldemort, and Facebook/
Apache’s Cassandra, the answer is 
eventual consistency. 

Eventual Consistency
Eventual consistency is a widely used 

ing, however, given it also enables the 
storage system to provide low latency—
defined as latency for reads and writes 
that is less than half the speed-of-light 
delay between the two most distant 
datacenters. A proof that predates the 

CAP theorem by 14 years10 shows it is 
impossible to guarantee low latency 
and provide strong consistency at the 
same time. Front-end Web servers read 
or write data from the storage system 
potentially many times to answer a 

Figure 2. Anomaly 1: Comment reordering.

Figure 3. Anomaly 2: Photo privacy violation.

Figure 1. Geo-replicated storage.

Data	  
Store	  

Web	  
Tier	  

Geo	  Replica+on	  

B	   B	  
B	  

B	  B	  

B	  

B	   B	  
B	  

B	  

B	  
B	  B	  

Browser	  

West Coast East Coast

Alice: “I’ve lost my wedding ring”
Alice: “Whew found it upstairs!”
Bob: “I’m glad to hear that”

Alice: “I’ve lost my wedding ring”
Bob: “I’m glad to hear that”

Alost

Afound

Bglad

T
im

e Alost

Afound

Bglad

West Coast East Coast

[Student deletes incriminating photos]
[Student accepts advisor as a friend]

Advisor can see 
incriminating photos

Sdelete

Saccept

Sdelete

Saccept

T
im

e



practice

MAY 2014  |   VOL.  57  |   NO.  5  |   COMMUNICATIONS OF THE ACM     63

term that can have many meanings. 
Here, it is defined as the strongest 
property provided by all systems that 
claim to provide it: namely, writes to 
one datacenter will eventually appear 
at other datacenters, and if all data-
centers have received the same set of 
writes, they will have the same values 
for all data. 

Contrast this with the following part 
of the definition of strong consistency 
(linearizability): a total order exists 
over all operations in the system. This 
makes programming a strongly consis-
tent storage system simple, or at least 
simpler: it behaves as a single entity. 
Eventual consistency does not say any-
thing about the ordering of operations. 
This means that different datacenters 
can reflect arbitrarily different sets of 
operations. For example, if someone 
connected to the West Coast datacen-
ter sets A=1, B=2, and C=3, then some-
one else connected to the East Coast 
datacenter may see only B=2 (not A=1 
or C=3), and someone else connected 
to the European datacenter may see 
only C=3 (not A=1 or B=2). This makes 
programming eventually consistent 
storage complicated: operations can 
appear out of order. 

The out-of-order arrival leads to 
many potential anomalies in eventu-
ally consistent systems. Here are a few 
examples for a social network: 

Figure 2 shows that in the West 
Coast datacenter, Alice posts, she com-
ments, and then Bob comments. In the 
East Coast datacenter, however, Alice’s 
comment has not appeared, making 
Bob look less than kind. Figure 3 shows 
that in the West Coast datacenter, a 
grad student carefully deletes incrimi-
nating photos before accepting an 
advisor as a friend. Unfortunately, in 
the East Coast datacenter, the friend-
acceptance appears before the photo 
deletions, allowing the advisor to see 
the photos.3 

Figure 4 shows that in the West 
Coast datacenter, Alice uploads pho-
tos, creates an album, and then adds 
the photos to the album, but in the 
East Coast datacenter, the operations 
appear out of order and her photos do 
not end up in the album. Finally, in Fig-
ure 5, Cindy and Dave have $1,000 in 
their joint bank account. Concurrently, 
Dave withdraws $1,000 from the East 
Coast datacenter and Cindy withdraws 

$1,000 from the West Coast datacen-
ter. Once both withdrawals propagate 
to each datacenter, their account is in 
a consistent state (-$1,000), but it is too 
late to prevent the mischievous couple 
from making off with their ill-gotten 
gains. 

Is eventual consistency the only op-
tion? Given that theoretical results 
show the ALPS properties are incom-
patible with strong consistency, do we 
have to settle for eventual consistency? 
Are we stuck with all the anomalies 
that come with eventual consistency? 
No! 

Our research systems, COPS11 and 
Eiger,12 have pushed on the properties 
that ALPS systems can provide. In par-
ticular, they provide causal consistency 
instead of eventual, which prevents 
the first three anomalies. (The fourth 
anomaly in Figure 5 is unfortunately 
unavoidable in a system that accepts 
writes in every location and guarantees 

low latency.) In addition, they provide 
limited forms of read-only and write-
only transactions that allow program-
mers to consistently read or write 
data spread across many different ma-
chines in a datacenter. 

Causal Consistency 
Causal consistency ensures that opera-
tions appear in the order the user in-
tuitively expects. More precisely, it en-
forces a partial order over operations 
that agree with the notion of potential 
causality. If operation A happens be-
fore operation B, then any datacenter 
that sees operation B must see opera-
tion A first. 

Three rules define potential causal-
ity:9

1. Thread of Execution. If a and b are 
two operations in a single thread of ex-
ecution, then a → b if operation a hap-
pens before operation b. 

2. Reads-From. If a is a write opera-

Figure 5. Anomaly 4: Double money withdrawal.

Figure 4. Anomaly 3: Broken photo album.
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execution rule. 
Now, in the East Coast datacenter, 

the operations can appear only in an 
order that agrees with causality: 

Op1 [Alice uploads photos.]
Then 
Op1 [Alice uploads photos.]
Op2 [Alice creates an album.]
Then 
Op1 [Alice uploads photos.]
Op2 [Alice creates an album.]
Op3 [Alice adds photos to the album.]

but never in a different order that re-
sults in an empty album or complicates 
what a programmer must think about. 

What causal consistency cannot do. 
Anomaly 4 represents the primary limi-
tation of causality consistency: it can-
not enforce global invariants. Anomaly 
4 has an implicit global invariant—that 
bank accounts cannot go below $0—
that is violated. This invariant cannot 
be enforced in an ALPS system. Avail-
ability dictates that operations must 
complete, and low latency ensures they 
are faster than the time it takes to com-
municate between datacenters. Thus, 
the operations must return before the 
datacenters can communicate and dis-
cover the concurrent withdrawals. 

True global invariants are quite 
rare, however. E-commerce sites, 
where it seems inventory cannot go be-
low 0, have back-order systems in place 
to deal with exactly that scenario. Even 
some banks do not enforce global $0 
invariants, as shown by a recent con-
current withdrawal attack on ATMs 
that extracted $40 million from only 12 
account numbers.14

tion and b is a read operation that re-
turns the value written by a, then a → b.

3. Transitivity. For operations a, b, 
and c, if a → b and b → c, then a → c. 
Thus, the causal relationship between 
operations is the transitive closure of 
the first two rules. 

Causal consistency ensures opera-
tions appear in an order that agrees 
with these rules. This makes users hap-
py because their operations are applied 
everywhere in the order they intended. 
It makes programmers happy because 
they no longer have to reason about 
out-of-order operations. 

Causal consistency prevents each of 
our first three anomalies, turning them 
into regularities. 

Regularity 1: No Missing Comments
In the West Coast datacenter, Alice 
posts, and then she and Bob comment:

Op1 Alice: I’ve lost my wedding ring. 
Op2 Alice: Whew, found it upstairs. 
Op3 [Bob reads Alice’s post and  

          comment.] 
Op4 Bob: I’m glad to hear that. 
Op1 → Op2 by the thread-of-execu-

tion rule; Op2 → Op3 by the reads-from 
rule; Op3 → Op4 by the thread-of-execu-
tion rule.

Write operations are only propagat-
ed and applied to other datacenters, so 
the full causal ordering that is enforced 
is Op1 → Op2 → Op4. 

Now, in the East Coast datacenter, 
operations can appear only in an order 
that agrees with causality. Thus: 

Op1 Alice: I’ve lost my wedding ring.
Then 

Op1 Alice: I’ve lost my wedding ring.
Op2 Alice: Whew, found it upstairs. 
Then 
Op1 Alice: I’ve lost my wedding ring.
Op2 Alice: Whew, found it upstairs. 
Op4 Bob: I’m glad to hear that.

but never the anomaly that makes Bob 
look unkind. 

Regularity 2: No Leaked Photos3

In the West Coast datacenter, a grad 
student carefully deletes incriminating 
photos before accepting an advisor as 
a friend:

Op1 [Student deletes incriminating 
          photos.]

Op2 [Student accepts advisor as a 
         friend.] 

Op1 → Op2 by the thread-of-execu-
tion rule. 

Now, in the East Coast datacenter, 
operations can appear only in an order 
that agrees with causality, which is: 

[Student deletes incriminating 
          photos.]

Then 
[Student deletes incriminating  

          photos.]
[Student accepts advisor as a friend.]

but never the anomaly that leaks pho-
tos to the student’s advisor. 

Regularity 3: Normal Photo Album
In the West Coast datacenter, Alice up-
loads photos and then adds them to 
her Summer 2013 album: 

Op1 [Alice uploads photos.]
Op2 [Alice creates an album.]
Op3 [Alice adds photos to the album.] 
Op1 → Op2 → Op3 by the thread-of-

Figure 6. Causality and dependency.Figure 6. Causality and dependency.
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Another limitation of causal con-
sistency also stems from the possi-
bility of concurrent operations. Pro-
grammers must decide how to deal 
with concurrent write operations to 
the same data at different datacen-
ters. A common strategy is the last-
writer-wins rule in which one concur-
rent update overwrites the other. For 
example, a social-network user can 
have only one birthday. Some situa-
tions, however, require a more careful 
approach. Consider a scenario where 
Alice has two pending friend requests 
being accepted concurrently at differ-
ent datacenters. Each accepted friend 
request should increase Alice’s friend 
count by one. With the last-writer-wins 
rule, however, one of the increments 
will overwrite the other. Instead, the 
two increments must be merged to 
increase Alice’s total friend count by 
two. With causally consistent storage 
(as with eventually consistent stor-
age), programmers must determine if 
the last-writer-wins rule is sufficient, 
or if they have to write a special func-
tion for merging concurrent updates. 

The final limitation of causal con-
sistency is it cannot see or enforce cau-
sality outside of the system. The classic 
example is a cross-country phone call. 
If Alice on the West Coast updates her 
profile, calls Bob on the East Coast, and 
then Bob updates his profile, the sys-
tem will not see the causal relationship 
between the two updates and will not 
enforce any ordering between them. 

Providing causal consistency. At a 
high level, our systems, COPS and Ei-
ger capture causality through a client 
library and then enforce the observed 
ordering when replicating writes to 
other datacenters. The ordering is 
enforced by delaying the application 
of a write until all causally previous 
operations have been applied. This 
delay is necessary only in remote 
datacenters; all causally previous op-
erations have already been applied at 
the datacenter that accepts the write. 
The client library that tracks causality 
sits between the Web servers and the 
storage tiers in each datacenter. (In 
current implementations it is on the 
Web servers.) Individual clients are 
identified through a special actor_id 
field in the API to the client library 
that allows the operations of different 
users on the same Web server to be 

disentangled. For example, in a social 
network the unique user ID could be 
used as the actor_id. 

Let’s first describe an inefficient 
system that provides causality and 
then explain how to refine it to make 
it efficient. 

Our systems operate by tracking and 
enforcing the ordering only between 
write operations. Read operations es-
tablish causal links between write op-
erations by different clients, but they 
are not replicated to other datacenters 
and thus do not need to have an order-
ing enforced on them. For example, in 
anomaly/regularity 1, Bob’s read (Op3) 
of Alice’s post (Op1) and comment 
(Op2) creates the causal link that orders 
Bob’s later comment (Op4) after Alice’s 
post and comment. A causal link be-
tween two write operations is called a 
dependency—the later operation de-
pends on the earlier operation. 

Figure 6 shows the relationship 
between the graph of causality and 
the graph of dependencies. A depen-
dency is a small piece of metadata 
that uniquely identifies a write opera-
tion. It has two fields: a key, which is 
the data location that is updated by 
the write; and a timestamp, which is 
a globally unique logical timestamp 
assigned by the logical clock of the 
server in the datacenter where it was 
originally written. Figure 6 illustrates 
(a) a set of example operations; (b) 
the graph of causality between them; 
(c) the corresponding dependency 
graph; and (d) a table listing depen-
dences with one-hop dependencies 
shown in bold.

In the initial design the client library 
tracks the full set of dependencies for 

each client. Tracking all dependencies 
for a client requires tracking three sets 
of write operations: 

1. All of the client’s previous write 
operations, because of the thread-of-
execution rule. 

2. All of the operations that wrote 
values it read, because of the reads-
from rule. 

3. All of the operations that the op-
erations in 1 and 2 depend on, because 
of the transitivity rule. 

Tracking the first set is straightfor-
ward: servers return the unique time-
stamp assigned to each write to the 
client library, which then adds a depen-
dency on that write. Tracking the sec-
ond set is also straightforward: servers 
return the timestamp of the write that 
wrote the value when they respond to 
reads, and then the client library adds a 
dependency on that write. The third set 
of operations is a bit trickier: it requires 
that every write carry with it all of its de-
pendencies, that these dependencies 
are stored with the value, returned with 
reads of that value, and then added to 
the reader’s set of dependencies by the 
client library. 

With the full set of dependencies 
for each client stored in its client li-
brary, all of these dependencies can 
be attached to each write operation 
the client issues. Now when a server 
in a remote datacenter receives a write 
with its full set of dependencies, it 
blocks the write and verifies each de-
pendency is satisfied. Blocking these 
replicated write operations is accept-
able because they are not client-facing 
and do not block reads to whatever 
data they update. Here, we have ex-
plicitly chosen to delay these write 

Figure 7. Regularity 1-Redux.
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Limited Transactions 
In addition to causal consistency, our 
systems provide limited forms of trans-
actions. These include read-only trans-
actions, which transactionally read data 
spread across many servers in a datacen-
ter, and write-only transactions, which 
transactionally update data spread 
across many servers in a datacenter. 

These limited transactions are ne-
cessitated—and complicated—by the 
current scale of data. Data for many 
services is now far too large to fit on a 
single machine and instead must be 
spread across many machines. With 
data resident on many machines, ex-
tracting a consistent view of that data 
becomes tricky. Even though a data 
store itself may always be consistent, 
a client can extract an inconsistent 
view because the client’s reads will 
be served at different times by differ-
ent servers. This, unfortunately, can 
reintroduce many of the anomalies 
inherent in eventual consistency. In 
Figure 8, for example, in the West 
Coast datacenter, a grad student re-
moves photo-viewing permissions 
from an advisor and uploads incrimi-
nating photos. The advisor concur-
rently tries to view the student’s pho-
tos and, incorrectly, is shown the 
incriminating photos. To avoid these 
anomalies, causal consistency must 
be extended from the storage system 
to the Web servers and then on to us-
ers of the service. This can be done 
using read-only transactions.

Read-only transactions allow pro-
grammers to transactionally read data 
spread across many servers, yielding a 
consistent view of the data. The inter-
face for a read-only transaction is sim-
ple: a list of data locations. Instead of 
issuing many individual reads for differ-
ent data locations, a programmer issues 
a single read for all those locations. This 
is similar to batching these operations, 
which is often done to make dispatch-
ing reads more efficient—except it also 
ensures the results are isolated. 

With read-only transactions, anom-
aly 5 can now be converted into a regu-
larity as well. Figure 9 shows that with 
read-only transactions, the permis-
sions and photos are read together 
transactionally, yielding any of the 
three valid states shown, but never the 
anomaly that leaks the incriminating 
photos to the student’s advisor. 

operations until they can appear in 
the correct order, as shown in Figure 
7. The dependency check for Bglad does 
not return until after Afound is applied 
on the East Coast, which ensures Bob 
is never misunderstood. 

The system described thus far pro-
vides causal consistency and all of 
the ALPS properties. Causal consis-
tency is provided by tracking causality 
with a client library and enforcing the 
causal order with dependency checks 
on replicated writes. Availability and 
partition tolerance are ensured by 
keeping all operations inside the lo-
cal datacenter. Low latency is guaran-
teed by keeping all operations local, 
nonblocking, and lock free. Finally, a 
fully decentralized design ensures the 
system has scalability. 

The current system, however, is 
inefficient. It has a huge amount of 
dependency metadata that travels 
around with write operations and a 
huge number of dependency checks 

to execute before applying them. Both 
of these factors steal throughput from 
user-facing operations and reduce the 
utility of the system. Luckily, our sys-
tems can exploit the transitivity inher-
ent in the graph of causality to dras-
tically reduce the dependencies that 
must be tracked and enforced. The 
subset of dependencies being tracked 
is the one-hop dependencies, which 
have an arc to the current operation 
in the graph of causality. (Note that 
in graph theoretic terms, the one-hop 
dependencies subset is the direct pre-
decessor set of an operation.) In Fig-
ure 6, the one-hop dependencies are 
shown in bold. They transitively cap-
ture all of the ordering constraints on 
an operation. In particular, because 
all other dependencies are depended 
upon by at least one of the one-hop 
dependencies by definition, if this cur-
rent operation occurs after the one-
hop dependencies, then by transitivity 
it will occur after all others as well.

Figure 8. Anomaly 5: Leaked photos.
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Figure 9. Regularity 5: No leaked photos.
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Providing read-only transactions. 
There are many techniques for ensur-
ing isolated access to data locations 
spread across many machines. The 
most popular of these include two-
phase locking (2PL), using a transac-
tion manager (TM) to schedule when 
reads are applied, and maintaining 
multiple versions of data with multiver-
sion concurrency control (MVCC). The 
first two approaches are at odds with 
the ALPS properties. All forms of lock-
ing, and 2PL in particular, can encoun-
ter locks that are already acquired and 
then either fail the operation, which 
gives up on availability, or block the 
operation until it can acquire the lock, 
which gives up on low latency. A TM 
is a centralized entity, and directing 
all reads though it is a bottleneck that 
inhibits scalability. This leaves MVCC, 
and our approach may be viewed as a 
particularly aggressive variant of it that 
is possible because our transactions 
are limited. 

The basic idea behind our read-
only transaction algorithm is that we 
want to read the entire distributed 
data store at a single logical time. (For 
logical time, each node in the system 
keeps a logical clock that is updated 
every time an event occurs (for ex-
ample, writing a value or receiving a 
message). When sending a message, 
a node includes a timestamp t set to 
its logical clock c; when receiving a 
message, a node sets c ←max(c, t + 1).9 
Logical time LT provides a progressing 
logical view of the system even though 
it is distributed and there is no cen-
tralized coordination of it. If event a 
happens before event b, then LT(a) < 
LT(b). Thus, if distributed data is read 
at a single logical time LT for all events 
seen at time t, we know all events that 
happen before them have lower logi-
cal times and thus are reflected in the 
results. Figure 10 shows an example of 
this graphically, with validity periods 
for values, represented by letters, writ-
ten to different locations. 

You can determine if values within 
a set are consistent with one another 
by annotating them with the logical 
time they became visible and then 
were overwritten. For example, in Fig-
ure 10 consistent sets include {A,J,X}, 
{B,K,X}, {B,K,Y}, {B,L,Y} and incon-
sistent sets include {A,K,X}, {B,J,Y}, 
and {C,L,X}, among others. Our serv-

ers annotate values in this way and in-
clude them when returning results to 
the client library so it can determine if 
values are mutually consistent. 

Our read-only transaction algo-
rithm is run by the client library and 
takes at most two rounds of parallel 
reads. In the first round, the client li-
brary sends out parallel requests for 
all requested data. Servers respond 
with their current visible values and 
validity intervals, which is the logi-
cal time the value was written and 
the current logical time at the server. 
The value may be valid at future logi-
cal times as well, but conservatively 
we know it is valid for at least this in-
terval. Once the client receives all re-
sponses, it determines if all the values 
are mutually consistent by checking 
for intersection in their validity inter-
vals. If there is intersection—which is 
almost always the case unless some 
of the values are overwritten concur-
rently with the read-only transac-
tion—then the client library knows 
the values are consistent and returns 
them to the client. 

If the validity intervals do not all 
intersect, then the process moves to 

the second round of the algorithm. 
The second round begins by calculat-
ing a single logical time at which to 
read values, called the effective time. It 
is calculated by choosing a time that 
ensures an up-to-date view of the data 
instead of being stuck on an old con-
sistent cut of it, and it allows the use 
of many of the values retrieved in the 
first round. The client library then is-
sues a second round of parallel reads 
for all data for which it does not have a 
valid value at the effective time. These 
second-round reads ask for the value 
of the data at the effective time, and 
servers answer these reads by travers-
ing the older version of a value until 
they find the one that was valid at the 
effective time. Figure 11 shows the 
second round in action. Figure 11a is a 
read-only transaction that completes 
in a single round, while Figure 11b is 
a read-only transaction that requires a 
second round and requests data loca-
tion 1 at the effective time 15 and re-
ceives value B in response. 

This read-only transaction algo-
rithm is specifically designed to main-
tain all the ALPS properties and pro-
vide high performance. It is available 

Figure 10. Logical time.
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Figure 11. Read-only transactions.
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because all reads ask for a current 
value or an old value. It is low latency 
because it requires at most two non-
blocking rounds of parallel reads. It 
is partition tolerant because all reads 
are in the local datacenter (partitions 
are assumed to occur only in the wide 
area, not in the local datacenter). It is 
scalable because it is fully decentral-
ized. Finally, it is performant because 
it normally takes only a single round of 
parallel reads and only two rounds of 
reads in the worst case. 

Our previous work on Eiger12 has 
more details on how to choose the ef-
fective time, how to limit server-side 
storage of old versions, and an algo-
rithm for write-only transactions that 
also maintains all the ALPS properties. 

The cost of causal consistency 
and limited transactions. For one re-
alistic view of Eiger’s overhead, we 
parameterized a synthetic workload 
based upon Facebook’s production 
The Associations and Objects (TAO) 
system.2 We then compared Eiger’s 
throughput with that of eventually 
consistency Cassandra from which 
it was forked in an experiment with 
clusters of eight servers each in Wash-
ington and California. The Cassandra 
setup achieved 23,657 operations per 
second that touched 498,239 data lo-
cations per second on average. The 
Eiger setup, with causal consistency 
and all inconsistent batch operations 
converted to read or write transac-
tions, achieved 22,891 operations per 
second that touched 480,904 data lo-
cations per second on average. This 
experiment shows that for this real-
world workload Eiger’s causal consis-

tency and stronger semantics do not 
impose significant overhead. 

To demonstrate the scalability 
of Eiger, we ran the Facebook TAO 
workload on N client machines that 
fully loaded an N-server cluster that is 
replicating writes to another N-server 
cluster (that is, the N=128 experiment 
involves 384 machines). This experi-
ment was run on PRObE’s Kodiak tes-
tbed,6 which provides an Emulab with 
exclusive access to hundreds of ma-
chines. Figure 12 shows the through-
put for Eiger as N scales from eight 
to 128 servers/cluster. The bars show 
throughput normalized against the 
throughput of the eight-server clus-
ter. Eiger scales out as the number of 
servers increases; each doubling of 
the number of servers increases clus-
ter throughput by 96% on average.

More information is available in our 
papers on COPS11 and Eiger,12 and Wy-
att Lloyd’s dissertation.13 The code for 
Eiger is available from https://github.
com/wlloyd/eiger. 
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Figure 12. Eiger scales linearly.
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