
MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 61

GEO-REP L ICATED S TO RAGE P ROV IDES copies of the same
data at multiple, geographically distinct locations.
Facebook, for example, geo-replicates its data (profiles,
friends lists, likes, and so on) to datacenters on the
East and West coasts of the U.S. and in Europe. In each
datacenter, a tier of separate Web servers accepts

browser requests and then handles
those requests by reading and writing
data from the storage system, as shown
in Figure 1.

Geo-replication brings two key
benefits to Web services: fault toler-
ance and low latency. It provides fault
tolerance through redundancy: if one
datacenter fails, others can continue
to provide the service. It provides low
latency through proximity: clients can
be directed to and served by a nearby
datacenter to avoid speed-of-light de-
lays associated with cross-country or
round-the-globe communication.

Geo-replication brings its chal-
lenges, however. The famous CAP
theorem, conjectured by Brewer1 and
proved by Gilbert and Lynch,7 shows
it is impossible to create a system that
has strong consistency, is always avail-
able for reads and writes, and is able

to continue operating during network
partitions. Each of these properties is
highly desirable. Strong consistency—
more formally known as linearizabil-
ity—makes programming easier. Avail-
ability ensures front-end Web servers
can always respond to client requests.
Partition tolerance ensures the system
can continue operating even when
datacenters cannot communicate with
one another. Faced with the choice of
at most two of these properties, many
systems5,8,16 have chosen to sacrifice
strong consistency to ensure avail-
ability and partition tolerance. Other
systems—for example, those that deal
with money—sacrifice availability and/
or partition tolerance to achieve the
strong consistency necessary for the
applications built on top of them.4,15

The former choice of availability
and partition tolerance is not surpris-

Don’t Settle
for Eventual
Consistency

DOI:10.1145/2596624

 Article development led by
 queue.acm.org

Stronger properties for low-latency
geo-replicated storage.

BY WYATT LLOYD, MICHAEL J. FREEDMAN,
MICHAEL KAMINSKY, AND DAVID G. ANDERSEN

http://dx.doi.org/10.1145/2596624

practice

62 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

single request; therefore, low latency
in the storage system is critical for en-
abling fast page-load times, which are
linked to user engagement with a ser-
vice—and, thus, revenue. An always-
available and partition-tolerant system
can provide low latency on the order of
milliseconds by serving all operations
in the local datacenter. A strongly con-
sistent system must contact remote
datacenters for reads and/or writes,
which takes hundreds of milliseconds.

Thus, systems that sacrifice strong
consistency gain much in return. They
can be always available, guarantee
responses with low latency, and pro-
vide partition tolerance. In Clusters
of Order-preserving Servers (COPS),11
developed for our original work on
this subject, we coined the term ALPS
for systems that provide these three
properties—always available, low la-
tency, and partition tolerance—and
one more: scalability. Scalability im-
plies that adding storage servers to
each datacenter produces a propor-
tional increase in storage capacity
and throughput. Scalability is critical
for modern systems because data has
grown far too large to be stored or
served by a single machine.

The question remains as to what
consistency properties ALPS systems
can provide. Before answering this,
let’s consider the consistency offered
by existing ALPS systems. For systems
such as Amazon’s Dynamo, LinkedIn’s
Project Voldemort, and Facebook/
Apache’s Cassandra, the answer is
eventual consistency.

Eventual Consistency
Eventual consistency is a widely used

ing, however, given it also enables the
storage system to provide low latency—
defined as latency for reads and writes
that is less than half the speed-of-light
delay between the two most distant
datacenters. A proof that predates the

CAP theorem by 14 years10 shows it is
impossible to guarantee low latency
and provide strong consistency at the
same time. Front-end Web servers read
or write data from the storage system
potentially many times to answer a

Figure 2. Anomaly 1: Comment reordering.

Figure 3. Anomaly 2: Photo privacy violation.

Figure 1. Geo-replicated storage.

Data	
Store	

Web	
Tier	

Geo	 Replica+on	

B	 B	
B	

B	 B	

B	

B	 B	
B	

B	

B	
B	 B	

Browser	

West Coast East Coast

Alice: “I’ve lost my wedding ring”
Alice: “Whew found it upstairs!”
Bob: “I’m glad to hear that”

Alice: “I’ve lost my wedding ring”
Bob: “I’m glad to hear that”

Alost

Afound

Bglad

T
im

e Alost

Afound

Bglad

West Coast East Coast

[Student deletes incriminating photos]
[Student accepts advisor as a friend]

Advisor can see
incriminating photos

Sdelete

Saccept

Sdelete

Saccept

T
im

e

practice

MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 63

term that can have many meanings.
Here, it is defined as the strongest
property provided by all systems that
claim to provide it: namely, writes to
one datacenter will eventually appear
at other datacenters, and if all data-
centers have received the same set of
writes, they will have the same values
for all data.

Contrast this with the following part
of the definition of strong consistency
(linearizability): a total order exists
over all operations in the system. This
makes programming a strongly consis-
tent storage system simple, or at least
simpler: it behaves as a single entity.
Eventual consistency does not say any-
thing about the ordering of operations.
This means that different datacenters
can reflect arbitrarily different sets of
operations. For example, if someone
connected to the West Coast datacen-
ter sets A=1, B=2, and C=3, then some-
one else connected to the East Coast
datacenter may see only B=2 (not A=1
or C=3), and someone else connected
to the European datacenter may see
only C=3 (not A=1 or B=2). This makes
programming eventually consistent
storage complicated: operations can
appear out of order.

The out-of-order arrival leads to
many potential anomalies in eventu-
ally consistent systems. Here are a few
examples for a social network:

Figure 2 shows that in the West
Coast datacenter, Alice posts, she com-
ments, and then Bob comments. In the
East Coast datacenter, however, Alice’s
comment has not appeared, making
Bob look less than kind. Figure 3 shows
that in the West Coast datacenter, a
grad student carefully deletes incrimi-
nating photos before accepting an
advisor as a friend. Unfortunately, in
the East Coast datacenter, the friend-
acceptance appears before the photo
deletions, allowing the advisor to see
the photos.3

Figure 4 shows that in the West
Coast datacenter, Alice uploads pho-
tos, creates an album, and then adds
the photos to the album, but in the
East Coast datacenter, the operations
appear out of order and her photos do
not end up in the album. Finally, in Fig-
ure 5, Cindy and Dave have $1,000 in
their joint bank account. Concurrently,
Dave withdraws $1,000 from the East
Coast datacenter and Cindy withdraws

$1,000 from the West Coast datacen-
ter. Once both withdrawals propagate
to each datacenter, their account is in
a consistent state (-$1,000), but it is too
late to prevent the mischievous couple
from making off with their ill-gotten
gains.

Is eventual consistency the only op-
tion? Given that theoretical results
show the ALPS properties are incom-
patible with strong consistency, do we
have to settle for eventual consistency?
Are we stuck with all the anomalies
that come with eventual consistency?
No!

Our research systems, COPS11 and
Eiger,12 have pushed on the properties
that ALPS systems can provide. In par-
ticular, they provide causal consistency
instead of eventual, which prevents
the first three anomalies. (The fourth
anomaly in Figure 5 is unfortunately
unavoidable in a system that accepts
writes in every location and guarantees

low latency.) In addition, they provide
limited forms of read-only and write-
only transactions that allow program-
mers to consistently read or write
data spread across many different ma-
chines in a datacenter.

Causal Consistency
Causal consistency ensures that opera-
tions appear in the order the user in-
tuitively expects. More precisely, it en-
forces a partial order over operations
that agree with the notion of potential
causality. If operation A happens be-
fore operation B, then any datacenter
that sees operation B must see opera-
tion A first.

Three rules define potential causal-
ity:9

1. Thread of Execution. If a and b are
two operations in a single thread of ex-
ecution, then a → b if operation a hap-
pens before operation b.

2. Reads-From. If a is a write opera-

Figure 5. Anomaly 4: Double money withdrawal.

Figure 4. Anomaly 3: Broken photo album.

West Coast East Coast

[Alice uploads photos]
[Alice creates album]
[Alice adds photos to album]

No photos or album exists

Album exists, but is empty

Album remains emptyAupload

Aupload

Aalbum

Aalbum

Aadd Aadd

T
im

e

West Coast East Coast

[Cindy takes $1000] [Dave takes $1000]

C–$1000

D–$1000

T
im

e

C–$1000

D–$1000

Balance: –$1000

practice

64 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

execution rule.
Now, in the East Coast datacenter,

the operations can appear only in an
order that agrees with causality:

Op1 [Alice uploads photos.]
Then
Op1 [Alice uploads photos.]
Op2 [Alice creates an album.]
Then
Op1 [Alice uploads photos.]
Op2 [Alice creates an album.]
Op3 [Alice adds photos to the album.]

but never in a different order that re-
sults in an empty album or complicates
what a programmer must think about.

What causal consistency cannot do.
Anomaly 4 represents the primary limi-
tation of causality consistency: it can-
not enforce global invariants. Anomaly
4 has an implicit global invariant—that
bank accounts cannot go below $0—
that is violated. This invariant cannot
be enforced in an ALPS system. Avail-
ability dictates that operations must
complete, and low latency ensures they
are faster than the time it takes to com-
municate between datacenters. Thus,
the operations must return before the
datacenters can communicate and dis-
cover the concurrent withdrawals.

True global invariants are quite
rare, however. E-commerce sites,
where it seems inventory cannot go be-
low 0, have back-order systems in place
to deal with exactly that scenario. Even
some banks do not enforce global $0
invariants, as shown by a recent con-
current withdrawal attack on ATMs
that extracted $40 million from only 12
account numbers.14

tion and b is a read operation that re-
turns the value written by a, then a → b.

3. Transitivity. For operations a, b,
and c, if a → b and b → c, then a → c.
Thus, the causal relationship between
operations is the transitive closure of
the first two rules.

Causal consistency ensures opera-
tions appear in an order that agrees
with these rules. This makes users hap-
py because their operations are applied
everywhere in the order they intended.
It makes programmers happy because
they no longer have to reason about
out-of-order operations.

Causal consistency prevents each of
our first three anomalies, turning them
into regularities.

Regularity 1: No Missing Comments
In the West Coast datacenter, Alice
posts, and then she and Bob comment:

Op1 Alice: I’ve lost my wedding ring.
Op2 Alice: Whew, found it upstairs.
Op3 [Bob reads Alice’s post and

 comment.]
Op4 Bob: I’m glad to hear that.
Op1 → Op2 by the thread-of-execu-

tion rule; Op2 → Op3 by the reads-from
rule; Op3 → Op4 by the thread-of-execu-
tion rule.

Write operations are only propagat-
ed and applied to other datacenters, so
the full causal ordering that is enforced
is Op1 → Op2 → Op4.

Now, in the East Coast datacenter,
operations can appear only in an order
that agrees with causality. Thus:

Op1 Alice: I’ve lost my wedding ring.
Then

Op1 Alice: I’ve lost my wedding ring.
Op2 Alice: Whew, found it upstairs.
Then
Op1 Alice: I’ve lost my wedding ring.
Op2 Alice: Whew, found it upstairs.
Op4 Bob: I’m glad to hear that.

but never the anomaly that makes Bob
look unkind.

Regularity 2: No Leaked Photos3

In the West Coast datacenter, a grad
student carefully deletes incriminating
photos before accepting an advisor as
a friend:

Op1 [Student deletes incriminating
 photos.]

Op2 [Student accepts advisor as a
 friend.]

Op1 → Op2 by the thread-of-execu-
tion rule.

Now, in the East Coast datacenter,
operations can appear only in an order
that agrees with causality, which is:

[Student deletes incriminating
 photos.]

Then
[Student deletes incriminating

 photos.]
[Student accepts advisor as a friend.]

but never the anomaly that leaks pho-
tos to the student’s advisor.

Regularity 3: Normal Photo Album
In the West Coast datacenter, Alice up-
loads photos and then adds them to
her Summer 2013 album:

Op1 [Alice uploads photos.]
Op2 [Alice creates an album.]
Op3 [Alice adds photos to the album.]
Op1 → Op2 → Op3 by the thread-of-

Figure 6. Causality and dependency.Figure 6. Causality and dependency.

User Op ID Operation

Alice w1 write(Alice:Town, NYC)

Bob r2 read(Alice:Town)

Bob w3 write(Bob:Town, LA)

Alice r4 read(Bob:Town))

Carol w5 write(Carol:Likes, ACM, 8/31/12)

Alice w6 write(Alice:Likes, ACM, 9/1/12)

Alice r7 read(Carol:Likes, ACM)

Alice w8 write(Alice:Friends, Carol, 9/2/12)

Op ID Dependencies

w1 —

w3 w1

w5 —

w6 w3 w1

w8 w6 w5 w3 w1

C
arol

w1 w1

w3

w8

w6 w6

w5

w3

w5

r2

r4

r7

B
ob

A
lice

L
og

ical T
im

e

L
og

ical T
im

e
(a) (b) (c) (d)

practice

MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 65

Another limitation of causal con-
sistency also stems from the possi-
bility of concurrent operations. Pro-
grammers must decide how to deal
with concurrent write operations to
the same data at different datacen-
ters. A common strategy is the last-
writer-wins rule in which one concur-
rent update overwrites the other. For
example, a social-network user can
have only one birthday. Some situa-
tions, however, require a more careful
approach. Consider a scenario where
Alice has two pending friend requests
being accepted concurrently at differ-
ent datacenters. Each accepted friend
request should increase Alice’s friend
count by one. With the last-writer-wins
rule, however, one of the increments
will overwrite the other. Instead, the
two increments must be merged to
increase Alice’s total friend count by
two. With causally consistent storage
(as with eventually consistent stor-
age), programmers must determine if
the last-writer-wins rule is sufficient,
or if they have to write a special func-
tion for merging concurrent updates.

The final limitation of causal con-
sistency is it cannot see or enforce cau-
sality outside of the system. The classic
example is a cross-country phone call.
If Alice on the West Coast updates her
profile, calls Bob on the East Coast, and
then Bob updates his profile, the sys-
tem will not see the causal relationship
between the two updates and will not
enforce any ordering between them.

Providing causal consistency. At a
high level, our systems, COPS and Ei-
ger capture causality through a client
library and then enforce the observed
ordering when replicating writes to
other datacenters. The ordering is
enforced by delaying the application
of a write until all causally previous
operations have been applied. This
delay is necessary only in remote
datacenters; all causally previous op-
erations have already been applied at
the datacenter that accepts the write.
The client library that tracks causality
sits between the Web servers and the
storage tiers in each datacenter. (In
current implementations it is on the
Web servers.) Individual clients are
identified through a special actor_id
field in the API to the client library
that allows the operations of different
users on the same Web server to be

disentangled. For example, in a social
network the unique user ID could be
used as the actor_id.

Let’s first describe an inefficient
system that provides causality and
then explain how to refine it to make
it efficient.

Our systems operate by tracking and
enforcing the ordering only between
write operations. Read operations es-
tablish causal links between write op-
erations by different clients, but they
are not replicated to other datacenters
and thus do not need to have an order-
ing enforced on them. For example, in
anomaly/regularity 1, Bob’s read (Op3)
of Alice’s post (Op1) and comment
(Op2) creates the causal link that orders
Bob’s later comment (Op4) after Alice’s
post and comment. A causal link be-
tween two write operations is called a
dependency—the later operation de-
pends on the earlier operation.

Figure 6 shows the relationship
between the graph of causality and
the graph of dependencies. A depen-
dency is a small piece of metadata
that uniquely identifies a write opera-
tion. It has two fields: a key, which is
the data location that is updated by
the write; and a timestamp, which is
a globally unique logical timestamp
assigned by the logical clock of the
server in the datacenter where it was
originally written. Figure 6 illustrates
(a) a set of example operations; (b)
the graph of causality between them;
(c) the corresponding dependency
graph; and (d) a table listing depen-
dences with one-hop dependencies
shown in bold.

In the initial design the client library
tracks the full set of dependencies for

each client. Tracking all dependencies
for a client requires tracking three sets
of write operations:

1. All of the client’s previous write
operations, because of the thread-of-
execution rule.

2. All of the operations that wrote
values it read, because of the reads-
from rule.

3. All of the operations that the op-
erations in 1 and 2 depend on, because
of the transitivity rule.

Tracking the first set is straightfor-
ward: servers return the unique time-
stamp assigned to each write to the
client library, which then adds a depen-
dency on that write. Tracking the sec-
ond set is also straightforward: servers
return the timestamp of the write that
wrote the value when they respond to
reads, and then the client library adds a
dependency on that write. The third set
of operations is a bit trickier: it requires
that every write carry with it all of its de-
pendencies, that these dependencies
are stored with the value, returned with
reads of that value, and then added to
the reader’s set of dependencies by the
client library.

With the full set of dependencies
for each client stored in its client li-
brary, all of these dependencies can
be attached to each write operation
the client issues. Now when a server
in a remote datacenter receives a write
with its full set of dependencies, it
blocks the write and verifies each de-
pendency is satisfied. Blocking these
replicated write operations is accept-
able because they are not client-facing
and do not block reads to whatever
data they update. Here, we have ex-
plicitly chosen to delay these write

Figure 7. Regularity 1-Redux.

West Coast East Coast

Alice: “I’ve lost my wedding ring”
Alice: “Whew found it upstairs!”
Bob: “I’m glad to hear that”

Alice: “I’ve lost my wedding ring”

Alost

Afound

Bglad

T
im

e

Alost

Afound

Bglad

practice

66 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

Limited Transactions
In addition to causal consistency, our
systems provide limited forms of trans-
actions. These include read-only trans-
actions, which transactionally read data
spread across many servers in a datacen-
ter, and write-only transactions, which
transactionally update data spread
across many servers in a datacenter.

These limited transactions are ne-
cessitated—and complicated—by the
current scale of data. Data for many
services is now far too large to fit on a
single machine and instead must be
spread across many machines. With
data resident on many machines, ex-
tracting a consistent view of that data
becomes tricky. Even though a data
store itself may always be consistent,
a client can extract an inconsistent
view because the client’s reads will
be served at different times by differ-
ent servers. This, unfortunately, can
reintroduce many of the anomalies
inherent in eventual consistency. In
Figure 8, for example, in the West
Coast datacenter, a grad student re-
moves photo-viewing permissions
from an advisor and uploads incrimi-
nating photos. The advisor concur-
rently tries to view the student’s pho-
tos and, incorrectly, is shown the
incriminating photos. To avoid these
anomalies, causal consistency must
be extended from the storage system
to the Web servers and then on to us-
ers of the service. This can be done
using read-only transactions.

Read-only transactions allow pro-
grammers to transactionally read data
spread across many servers, yielding a
consistent view of the data. The inter-
face for a read-only transaction is sim-
ple: a list of data locations. Instead of
issuing many individual reads for differ-
ent data locations, a programmer issues
a single read for all those locations. This
is similar to batching these operations,
which is often done to make dispatch-
ing reads more efficient—except it also
ensures the results are isolated.

With read-only transactions, anom-
aly 5 can now be converted into a regu-
larity as well. Figure 9 shows that with
read-only transactions, the permis-
sions and photos are read together
transactionally, yielding any of the
three valid states shown, but never the
anomaly that leaks the incriminating
photos to the student’s advisor.

operations until they can appear in
the correct order, as shown in Figure
7. The dependency check for Bglad does
not return until after Afound is applied
on the East Coast, which ensures Bob
is never misunderstood.

The system described thus far pro-
vides causal consistency and all of
the ALPS properties. Causal consis-
tency is provided by tracking causality
with a client library and enforcing the
causal order with dependency checks
on replicated writes. Availability and
partition tolerance are ensured by
keeping all operations inside the lo-
cal datacenter. Low latency is guaran-
teed by keeping all operations local,
nonblocking, and lock free. Finally, a
fully decentralized design ensures the
system has scalability.

The current system, however, is
inefficient. It has a huge amount of
dependency metadata that travels
around with write operations and a
huge number of dependency checks

to execute before applying them. Both
of these factors steal throughput from
user-facing operations and reduce the
utility of the system. Luckily, our sys-
tems can exploit the transitivity inher-
ent in the graph of causality to dras-
tically reduce the dependencies that
must be tracked and enforced. The
subset of dependencies being tracked
is the one-hop dependencies, which
have an arc to the current operation
in the graph of causality. (Note that
in graph theoretic terms, the one-hop
dependencies subset is the direct pre-
decessor set of an operation.) In Fig-
ure 6, the one-hop dependencies are
shown in bold. They transitively cap-
ture all of the ordering constraints on
an operation. In particular, because
all other dependencies are depended
upon by at least one of the one-hop
dependencies by definition, if this cur-
rent operation occurs after the one-
hop dependencies, then by transitivity
it will occur after all others as well.

Figure 8. Anomaly 5: Leaked photos.

West Coast

Friends ServerStudent
Photo Server

Advisor

remove advisor
THEN

add bad photos

friends check
and photo fetch

yes friends

bad photos

Sremove

Sadd

T
im

e

Figure 9. Regularity 5: No leaked photos.

West Coast

Friends ServerStudent
Photo Server

Advisor

remove advisor
THEN

add bad photos

yes friends, old photos

OR

OR

not friends, old photos

not friends, bad photos

Sremove

Sadd

T
im

e

practice

MAY 2014 | VOL. 57 | NO. 5 | COMMUNICATIONS OF THE ACM 67

Providing read-only transactions.
There are many techniques for ensur-
ing isolated access to data locations
spread across many machines. The
most popular of these include two-
phase locking (2PL), using a transac-
tion manager (TM) to schedule when
reads are applied, and maintaining
multiple versions of data with multiver-
sion concurrency control (MVCC). The
first two approaches are at odds with
the ALPS properties. All forms of lock-
ing, and 2PL in particular, can encoun-
ter locks that are already acquired and
then either fail the operation, which
gives up on availability, or block the
operation until it can acquire the lock,
which gives up on low latency. A TM
is a centralized entity, and directing
all reads though it is a bottleneck that
inhibits scalability. This leaves MVCC,
and our approach may be viewed as a
particularly aggressive variant of it that
is possible because our transactions
are limited.

The basic idea behind our read-
only transaction algorithm is that we
want to read the entire distributed
data store at a single logical time. (For
logical time, each node in the system
keeps a logical clock that is updated
every time an event occurs (for ex-
ample, writing a value or receiving a
message). When sending a message,
a node includes a timestamp t set to
its logical clock c; when receiving a
message, a node sets c ←max(c, t + 1).9
Logical time LT provides a progressing
logical view of the system even though
it is distributed and there is no cen-
tralized coordination of it. If event a
happens before event b, then LT(a) <
LT(b). Thus, if distributed data is read
at a single logical time LT for all events
seen at time t, we know all events that
happen before them have lower logi-
cal times and thus are reflected in the
results. Figure 10 shows an example of
this graphically, with validity periods
for values, represented by letters, writ-
ten to different locations.

You can determine if values within
a set are consistent with one another
by annotating them with the logical
time they became visible and then
were overwritten. For example, in Fig-
ure 10 consistent sets include {A,J,X},
{B,K,X}, {B,K,Y}, {B,L,Y} and incon-
sistent sets include {A,K,X}, {B,J,Y},
and {C,L,X}, among others. Our serv-

ers annotate values in this way and in-
clude them when returning results to
the client library so it can determine if
values are mutually consistent.

Our read-only transaction algo-
rithm is run by the client library and
takes at most two rounds of parallel
reads. In the first round, the client li-
brary sends out parallel requests for
all requested data. Servers respond
with their current visible values and
validity intervals, which is the logi-
cal time the value was written and
the current logical time at the server.
The value may be valid at future logi-
cal times as well, but conservatively
we know it is valid for at least this in-
terval. Once the client receives all re-
sponses, it determines if all the values
are mutually consistent by checking
for intersection in their validity inter-
vals. If there is intersection—which is
almost always the case unless some
of the values are overwritten concur-
rently with the read-only transac-
tion—then the client library knows
the values are consistent and returns
them to the client.

If the validity intervals do not all
intersect, then the process moves to

the second round of the algorithm.
The second round begins by calculat-
ing a single logical time at which to
read values, called the effective time. It
is calculated by choosing a time that
ensures an up-to-date view of the data
instead of being stuck on an old con-
sistent cut of it, and it allows the use
of many of the values retrieved in the
first round. The client library then is-
sues a second round of parallel reads
for all data for which it does not have a
valid value at the effective time. These
second-round reads ask for the value
of the data at the effective time, and
servers answer these reads by travers-
ing the older version of a value until
they find the one that was valid at the
effective time. Figure 11 shows the
second round in action. Figure 11a is a
read-only transaction that completes
in a single round, while Figure 11b is
a read-only transaction that requires a
second round and requests data loca-
tion 1 at the effective time 15 and re-
ceives value B in response.

This read-only transaction algo-
rithm is specifically designed to main-
tain all the ALPS properties and pro-
vide high performance. It is available

Figure 10. Logical time.

Location 1

Location 2

Location 3

1 11

A B

21

C

2 12

J K

19

L

3 15

X Y

Logical Time

Figure 11. Read-only transactions.

Location 1

Location 2

Location 3

1 7

A

2 9

J

12 16

15

K

3 8

X

3

X

1 10

BA

Logical TimeLogical Time

(a) (b)

practice

68 COMMUNICATIONS OF THE ACM | MAY 2014 | VOL. 57 | NO. 5

Eventual Consistency Today:
Limitations, Extensions, and Beyond

Peter Bailis, Ali Ghodsi
http://queue.acm.org/detail.cfm?id=2462076

Structured Deferral: Synchronization via
Procrastination
Paul E. McKenney
http://queue.acm.org/detail.cfm?id=2488549

References
1. Brewer, E. Towards robust distributed systems. In

Proceedings of the 19th Annual ACM Symposium on
Principles of Distributed Computing, (2000)

2. Bronson, N., et al. TAO: Facebook’s distributed data
store for the social graph. In Proceedings of the
Usenix Annual Technical Conference, (2013).

3. Cham, J. PhD Comics (June 2013); http://www.
phdcomics.com/comics.php?f=1592.

4. Corbett, J.C. et al. Spanner: Google’s globally
distributed database. ACM Transactions on Computer
Systems 31, 3 (2013).

5. DeCandia, G., et al. Dynamo: Amazon’s highly available
key-value store. In Proceedings of the 21st ACM
Symposium on OS Principles, (2007), 205–220.

6. Gibson, G., Grider, G., Jacobson, A. and Lloyd, W.
PRObE: A thousand-node experimental cluster for
computer systems research. Usenix ;login: 38, 3 (2013).

7. Gilbert, S. and Lynch, N. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
Web services. ACM SIGACT News 33, 2 (2002), 51–59.

8. Lakshman, A. and Malik, P. Cassandra—a
decentralized structured storage system. In The 3rd
ACM SIGOPS International Workshop on Large-scale
Distributed Systems and Middleware, (2009).

9. Lamport, L. Time, clocks, and the ordering of events in
a distributed system. Commun. ACM 21, 7 (July 1978),
558–565.

10. Lipton, R.J. and Sandberg, J.S. PRAM: A scalable
shared memory. Technical Report TR-180-88.
Princeton University, Department of Computer
Science, 1988.

11. Lloyd, W., Freedman, M. J. and Kaminsky, M. and
Andersen, D.G. Don’t settle for eventual: Scalable
causal consistency for wide-area storage with COPS.
In Proceedings of the 23rd Symposium on Operating
Systems Principles: (2011), 401–416.

12. Lloyd, W., Freedman, M.J., Kaminsky, M. and
Andersen, D.G. Stronger semantics for low-latency
geo-replicated storage. In Proceedings of the 10th
Usenix Conference on Networked Systems Design and
Implementation (2013), 313–328.

13. Lloyd, W. Stronger consistency and semantics for
low-latency geo-replicated storage. Ph.D. Dissertation,
2013, Princeton University.

14. Santora, M. In hours, thieves took $45 million in ATM
scheme. New York Times (May 9, 2013).

15. Sovran, Y., Power, R., Aguilera, M.K. and Li, J.
Transactional storage for geo-replicated systems.
In Proceedings of the 23rd Symposium on Operating
Systems Principles, (2011) 385–400.

16. Voldemort. 2013; http://project-voldemort.com.

Wyatt Lloyd is a postdoctoral researcher at Facebook
and is to begin a position as an assistant professor at the
University of Southern California. His research interests
include the distributed systems and networking problems
that underlie the architecture of large-scale websites,
cloud computing, and big data.

Michael J. Freedman is an associate professor of
computer science at Princeton University, with a research
focus on distributed systems, networking, and security.

Michael Kaminsky is a senior research scientist at Intel
Labs and is an adjunct faculty member of the computer
science department at Carnegie Mellon University. He is
part of the Intel Science and Technology Center for Cloud
Computing based in Pittsburgh, PA.

David G. Andersen is an associate professor of
computer science at Carnegie Mellon University. In 1995,
he cofounded an Internet service provider in Salt Lake
City, Utah.

Copyright held by Owner(s)/Author(s). Publication rights
licensed to ACM. $15.00.

because all reads ask for a current
value or an old value. It is low latency
because it requires at most two non-
blocking rounds of parallel reads. It
is partition tolerant because all reads
are in the local datacenter (partitions
are assumed to occur only in the wide
area, not in the local datacenter). It is
scalable because it is fully decentral-
ized. Finally, it is performant because
it normally takes only a single round of
parallel reads and only two rounds of
reads in the worst case.

Our previous work on Eiger12 has
more details on how to choose the ef-
fective time, how to limit server-side
storage of old versions, and an algo-
rithm for write-only transactions that
also maintains all the ALPS properties.

The cost of causal consistency
and limited transactions. For one re-
alistic view of Eiger’s overhead, we
parameterized a synthetic workload
based upon Facebook’s production
The Associations and Objects (TAO)
system.2 We then compared Eiger’s
throughput with that of eventually
consistency Cassandra from which
it was forked in an experiment with
clusters of eight servers each in Wash-
ington and California. The Cassandra
setup achieved 23,657 operations per
second that touched 498,239 data lo-
cations per second on average. The
Eiger setup, with causal consistency
and all inconsistent batch operations
converted to read or write transac-
tions, achieved 22,891 operations per
second that touched 480,904 data lo-
cations per second on average. This
experiment shows that for this real-
world workload Eiger’s causal consis-

tency and stronger semantics do not
impose significant overhead.

To demonstrate the scalability
of Eiger, we ran the Facebook TAO
workload on N client machines that
fully loaded an N-server cluster that is
replicating writes to another N-server
cluster (that is, the N=128 experiment
involves 384 machines). This experi-
ment was run on PRObE’s Kodiak tes-
tbed,6 which provides an Emulab with
exclusive access to hundreds of ma-
chines. Figure 12 shows the through-
put for Eiger as N scales from eight
to 128 servers/cluster. The bars show
throughput normalized against the
throughput of the eight-server clus-
ter. Eiger scales out as the number of
servers increases; each doubling of
the number of servers increases clus-
ter throughput by 96% on average.

More information is available in our
papers on COPS11 and Eiger,12 and Wy-
att Lloyd’s dissertation.13 The code for
Eiger is available from https://github.
com/wlloyd/eiger.

Acknowledgements
This work was supported by funding
from National Science Foundation
Awards CSR-0953197 (CAREER), CCF-
0964474, CNS-1042537 (PRObE), and
CNS-1042543 (PRObE); and by Intel via
the Intel Science and Technology Cen-
ter for Cloud Computing (ISTC-CC).

 Related articles
 on queue.acm.org

Proving the Correctness of Nonblocking
Data Structures

Mathieu Desnoyers
http://queue.acm.org/detail.cfm?id=2490873

Figure 12. Eiger scales linearly.

128

64

32

16

8

4

2

1

8 16 32 64 128

Servers/Cluster (log)

N
or

m
al

iz
ed

 T
h

ro
u

g
h

p
u

t
(l

og
)

